【題目】已知函數(shù).
(1)若,求函數(shù)的極值點;
(2)若,函數(shù)有兩個極值點,,且,求的最小值。
【答案】(1)見解析;(2)見解析
【解析】
(1)求出,分兩種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間,根據(jù)函數(shù)的單調(diào)性可得函數(shù)的極值;(2) ,記,,利用導數(shù)研究函數(shù)的單調(diào)性,由單調(diào)性可求得,從而可得結果.
(1)的定義域為,,
①若,則,
所以當時,,所以在上單調(diào)遞增,
所以無極值點.
②若,則,
由得,.
當的值變化時,,的值的變化情況如下:
所以有極大值點,極小值點.
(2)由(1)及條件可知
,
且, ,即,,
所以 ,
記,,
因為當時, ,
所以在上單調(diào)遞減, 因為,
所以,即.
科目:高中數(shù)學 來源: 題型:
【題目】心理學家分析發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取名同學(男女),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 總計 | |
男同學 | |||
女同學 | |||
總計 |
(1)能否據(jù)此判斷有的把握認為視覺和空間能力與性別有關?
(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在分鐘,乙每次解答一道幾何題所用的時間在分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何的名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為元,當用水超過4噸時,超過部分每噸為元,每月甲、乙兩戶共交水費元,已知甲、乙兩戶該月用水量分別為.
(1)求關于的函數(shù)關系式;
(2)若甲、乙兩戶該月共交水費元,分別求出甲、乙兩戶該月的用水量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c.已知cosC=.
(1)若,求△ABC的面積;
(2)設向量,,且,求sin(B-A)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一名高二學生盼望2020年進入某名牌大學學習,假設該名牌大學有以下條件之一均可錄。孩2020年2月通過考試進入國家數(shù)學奧賽集訓隊(集訓隊從2019年10月省數(shù)學競賽一等獎中選拔);②2020年3月自主招生考試通過并且達到2020年6月高考重點分數(shù)線,③2020年6月高考達到該校錄取分數(shù)線(該校錄取分數(shù)線高于重點線),該學生具備參加省數(shù)學競賽、自主招生和高考的資格且估計自己通過各種考試的概率如下表
省數(shù)學競賽一等獎 | 自主招生通過 | 高考達重點線 | 高考達該校分數(shù)線 |
0.5 | 0.6 | 0.9 | 0.7 |
若該學生數(shù)學競賽獲省一等獎,則該學生估計進入國家集訓隊的概率是0.2.若進入國家集訓隊,則提前錄取,若未被錄取,則再按②、③順序依次錄取:前面已經(jīng)被錄取后,不得參加后面的考試或錄取.(注:自主招生考試通過且高考達重點線才能錄。
(1)求該學生參加自主招生考試的概率;
(2)求該學生參加考試的次數(shù)的分布列及數(shù)學期望;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),f(x)=-mx2-m+ln(1-m),(m<1).
(Ⅰ)當m=時,求f(x)的極值;
(Ⅱ)證明:函數(shù)f(x)有且只有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某快遞公司(為企業(yè)服務)準備在兩種員工付酬方式中選擇一種現(xiàn)邀請甲、乙兩人試行10天兩種方案如下:甲無保底工資送出50件以內(nèi)(含50件)每件支付3元,超出50件的部分每件支付5元;乙每天保底工資50元,且每送出一件再支付2元分別記錄其10天的件數(shù)得到如圖莖葉圖,若將頻率視作概率,回答以下問題:
(1)記甲的日工資額為(單位:元),求的分布列和數(shù)學期望;
(2)如果僅從日工資額的角度考慮請利用所學的統(tǒng)計學知識為快遞公司在兩種付酬方式中作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(其中e為自然對數(shù)的底數(shù),m、n為常數(shù)),函數(shù)定義為:對每一個給定的實數(shù)x,
(1)當m、n滿足什么條件時,對所有的實數(shù)x恒成立;
(2)設a、b是兩個實數(shù),滿足且m,當時,求函數(shù)在區(qū)間的上的單調(diào)增區(qū)間的長度之和(用含a、b的式子表示)(閉區(qū)間的長度定義為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com