【題目】已知F1(﹣c,0)、F2(c,0)分別是橢圓G: 的左、右焦點,點M是橢圓上一點,且MF2⊥F1F2 , |MF1|﹣|MF2|= a.
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點,以AB為底作等腰三角形,頂點為P(﹣3,2),求△PAB的面積.
【答案】
(1)解:∵|MF1|﹣|MF2|= a,|MF1|+|MF2|=2a,
∴|MF1|= ,|MF2|= ,
∵MF2⊥F1F2,∴ .
即 ,則 ,
∵c2=a2﹣4,∴a2=12,
∴橢圓
(2)解:設直線l的方程為y=x+m.
由 ,得4x2+6mx+3m2﹣12=0.①
設A、B的坐標分別為(x1,y1)、(x2,y2)(x1<x2),AB的中點為E(x0,y0),
則 , .
∵AB是等腰△PAB的底邊,∴PE⊥AB.
∴PE的斜率 ,解得m=2.
此時方程①為4x2+12x=0,解得x1=﹣3,x2=0,∴y1=﹣1,y2=2,
∴|AB|=3 .
此時,點P(﹣3,2)到直線AB:x﹣y+2=0的距離d= ,
∴△PAB的面積S=
【解析】(1)本題關鍵是由MF2⊥F1F2得到|MF1|2=|MF2|2+|F1F2|2;(2)設出直線l的方程,借助一元二次方程根與系數(shù)的關系表示出PE的斜率,再結合PE⊥AB求得直線l的方程,即可求得三角形PAB的面積.
【考點精析】認真審題,首先需要了解橢圓的標準方程(橢圓標準方程焦點在x軸:,焦點在y軸:).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,平面平面, 為等邊三角形, 且, 分別為的中點.
(1)求證: 平面.
(2)求證:平面平面.
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】語句p:曲線x2﹣2mx+y2﹣4y+2m+7=0表示圓;語句q:曲線 + =1表示焦點在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)在定義域內(nèi)存在區(qū)間,使得該函數(shù)在區(qū)間上的值域為,則稱函數(shù)是該定義域上的“和諧函數(shù)”.
(1)求證:函數(shù)是“和諧函數(shù)”;
(2)若函數(shù)是“和諧函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,圓.
(Ⅰ)若直線過點且到圓心的距離為1,求直線的方程;
(Ⅱ)設過點的直線與圓交于兩點(的斜率為正),當時,求以線段為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的是__________.(填上所有正確命題的序號)
①若, ,則; ②若, ,則;
③若, ,則; ④若, , , ,則.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com