10.等比數(shù)列{an}中,a1=3,a4=24,設數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Sn,則S8等于( 。
A.$\frac{85}{128}$B.$\frac{21}{64}$C.$\frac{63}{128}$D.$\frac{35}{64}$

分析 利用等比數(shù)列的通項公式可得公比q,再利用等比數(shù)列的前n項和公式即可得出.

解答 解:設等比數(shù)列{an}的公比為q,∵a1=3,a4=24,
∴24=3×q3,
解得q=2.
∴an=3×2n-1
∴數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Sn=$\frac{1}{3}(1+\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}})$
=$\frac{1}{3}×\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=$\frac{2}{3}(1-\frac{1}{{2}^{n}})$,
則S8=$\frac{2}{3}(1-\frac{1}{{2}^{8}})$=$\frac{85}{128}$.
故選:A.

點評 本題考查了等比數(shù)列的通項公式、等比數(shù)列的前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.某城市現(xiàn)有人口100萬,根據(jù)最近20年的統(tǒng)計資料,這個城市的人口的年自然增長率為0.8%,按照這個增長率計算,51年后這個城市的人口預計有150萬(用代數(shù)式表示,并化簡,精確到1年)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.兩互相平行的直線分別經(jīng)過A(2,3),B(-1,-1),并且各自繞A,B旋轉(zhuǎn),則兩平行直線的距離d的取值范圍是(0,5].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.探討下列各式中,角x分別為何值時,式子失去意義:
(1)tanx+$\frac{1}{sinx}$;
(2)$\frac{\sqrt{tanx}}{sinx}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.假設平面α∩平面β=EF,AB⊥α,CD⊥β,垂足分別為B,D,若增加一個條件,就能推出BD⊥EF.現(xiàn)有下面四個條件:
①AC⊥α;②AC與α,β所成的角相等;③AC與CD在β內(nèi)的射影在同一條直線上;④AC∥EF
其中能成為增加條件的是①③(把你認為正確的條件序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}$=1的兩個焦點,過F1的直線交此橢圓于A,B兩點,若|AF2|+|BF2|=8,則|AB|=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在直角坐標系xOy中,曲線M的參數(shù)方程為$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=sin2θ}\end{array}\right.$(θ為參數(shù)),若以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線N的極坐標方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t為常數(shù)).當曲線N與曲線M只有一個公共點時,t的取值范圍為$\left\{{t\left|{1-\sqrt{2}<t≤1+\sqrt{2}或t=-\frac{5}{4}}\right.}\right\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=|x+m|.
(1)若不等式f(1)+f(-2)≥5成立,求實數(shù)m的取值范圍;
(2)當x≠0時,證明:f($\frac{1}{x}$)+f(-x)≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.圓C的極坐標方程為$ρ=2\sqrt{2}cos(θ+\frac{3}{4}π)$,極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合,且長度單位相同,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)).
(1)求C的直角坐標方程及圓心的極坐標
(2)l與C交于A,B兩點,求|AB|

查看答案和解析>>

同步練習冊答案