三角形的面積為為三角形的邊長,為三角形內(nèi)切圓的半徑,利用類比推理,可得出四面體的體積為(   )

A.

B.

C.

分別為四面體的四個面的面積,r為四面體內(nèi)切球的半徑)

D.

 

【答案】

C

【解析】

試題分析:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是r,根據(jù)三角形的面積的求解方法:分割法,將O與四頂點連起來,可得四面體的體積等于以O(shè)為頂點,分別以四個面為底面的4個三棱錐體積的和,∴.

考點:本小題主要考查類比推理.

點評:類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.解決類比推理問題的一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(或猜想)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點E為AB的中點.△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.
(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是正方形,其中AB=2米;上部CDG是等邊三角形,固定點E為AB的中點.△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.
(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002年全國各省市高考模擬試題匯編 題型:044

設(shè)∈C,且滿足,∈(,π).

(Ⅰ)求的三角形式;

(Ⅱ)設(shè)分別對應(yīng)復(fù)平面上點,且,arg()=,求及三角形的面積(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市靜安區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點E為AB的中點.△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.
(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市靜安區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是正方形,其中AB=2米;上部CDG是等邊三角形,固定點E為AB的中點.△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.
(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

同步練習(xí)冊答案