若某數(shù)列的前4項(xiàng)為1,0,1,0,則這個(gè)數(shù)列的通項(xiàng)公式不可能是(    )

A.  

B.

C.

D.

D   解析:令=1,2,3,4代入驗(yàn)證即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)一模)設(shè)滿(mǎn)足以下兩個(gè)條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分別寫(xiě)出一個(gè)單調(diào)遞增的3階和4階“期待數(shù)列”;
(Ⅱ)若某2013階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(Ⅲ)記n階“期待數(shù)列”的前k項(xiàng)和為Sk(k=1,2,3,…,n),試證:|Sk|≤
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某數(shù)列的前三項(xiàng)分別是下表第一、二、三行中的某一個(gè)數(shù),且前三項(xiàng)中任何兩個(gè)數(shù)不在下表的同一列.
第一列 第二列 第三列
第一行 3 2 10
第二行 14 4 6
第三行 18 9 8
若此數(shù)列是等差數(shù)列,記作{an},若此數(shù)列是等比數(shù)列,記作{bn}.
(I)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(II)將數(shù)列{an}的項(xiàng)和數(shù)列{bn}的項(xiàng)依次從小到大排列得到數(shù)列{cn},數(shù)列{cn}的前n項(xiàng)和為Sn,試求最大的自然數(shù)M,使得當(dāng)n≤M時(shí),都有Sn≤2012.
(Ⅲ)若對(duì)任意n∈N,有an+1bn+λbnbn+1≥anbn+1成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)一模)設(shè)滿(mǎn)足以下兩個(gè)條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分別寫(xiě)出一個(gè)單調(diào)遞增的3階和4階“期待數(shù)列”;
(Ⅱ)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(Ⅲ)記n階“期待數(shù)列”的前k項(xiàng)和為Sk(k=1,2,3,…,n),試證:
(1)|Sk|≤
1
2
;     
(2)|
n
i=1
ai
i
|≤
1
2
-
1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年北京市豐臺(tái)區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)滿(mǎn)足以下兩個(gè)條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分別寫(xiě)出一個(gè)單調(diào)遞增的3階和4階“期待數(shù)列”;
(Ⅱ)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(Ⅲ)記n階“期待數(shù)列”的前k項(xiàng)和為Sk(k=1,2,3,…,n),試證:
(1);     
(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案