拋物線上橫坐標(biāo)是5的點到其焦點的距離是8,則以為圓
心,且與雙曲線的漸近線相切的圓的方程是
A.B.
C.D.
D
此題考查圓錐曲線的知識
思路:先求出P的值,然后根據(jù)直線與圓相切可知,圓的半徑等于圓心到直線的距離求半徑
   雙曲線的漸近線為
 
答案  D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
已知過點的直線與拋物線交于、兩點,為坐標(biāo)原點.
(1)若以為直徑的圓經(jīng)過原點,求直線的方程;
(2)若線段的中垂線交軸于點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若P1(x1,y1),P2(x2,y2)是拋物線y2=2px(p>0)上的兩個不同的點,則是P1P2過拋物線焦點的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,已知直線l與拋物線C交于AB兩點,為坐標(biāo)原點,。

(Ⅰ)求直線l和拋物線C的方程;
(Ⅱ)拋物線上一動點PAB運動時,
求△ABP面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y2=4x關(guān)于直線x=2對稱的曲線方程是(  )
A.y2=8-4xB.y2=4x-8
C.y2=16-4xD.y2=4x-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為                              (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點與橢圓的右焦點重合,則的值為 (   )
A  4                B  2               C –4              D –2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線經(jīng)過拋物線的焦點,則
最小值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線l過拋物線 (a>0)的焦點,并且與x軸垂直,若l被拋物線截得的線段長為4,則a=               

查看答案和解析>>

同步練習(xí)冊答案