6.甲、乙兩地準(zhǔn)備開通全線長1750km的高鐵.已知運(yùn)行中高鐵每小時(shí)所需的能源費(fèi)用W(萬元)和速度V(km/h)的立方成正比,當(dāng)速度為100km/h時(shí),能源費(fèi)用是每小時(shí)0.06萬元,其余費(fèi)用(與速度無關(guān))是每小時(shí)3.24萬元,已知最大速度不超過C(km/h)(C為常數(shù),0<C≤400).
(1)求高鐵運(yùn)行全程所需的總費(fèi)用y與列車速度v的函數(shù)關(guān)系;
(2)當(dāng)高鐵速度為多少時(shí),運(yùn)行全程所需的總費(fèi)用最低?

分析 (1)先設(shè)出函數(shù)關(guān)系式,代入速度與每小時(shí)燃料費(fèi)的關(guān)系值求出比例系數(shù)即可;
(2)根據(jù)題設(shè)要求設(shè)出行駛總費(fèi)用與速度之間的函數(shù)關(guān)系式,再利用函數(shù)的導(dǎo)數(shù)去求函數(shù)的最小值即可.

解答 解:(1)設(shè)能源費(fèi)用每小時(shí)是w千元,車速是vkm/h,依題意有w=kv3(k為比例系數(shù)),
將v=100,w=0.06代入得k=6×10-8.于是有w=6×10-8v3
因此列車從甲地行駛到乙地,所需的總費(fèi)用為y=$\frac{1750}{v}$(w+3.24)=1750(6×10-8v2+$\frac{3.24}{v}$),(0<v≤C)(C為常數(shù),0<C≤400).
(2)由(1)化簡得y=105(10-6v2+$\frac{54}{v}$),
設(shè)f(x)=10-6x2+$\frac{54}{x}$,x>0,
所以f′(x)=2×10-6x-$\frac{54}{{x}^{2}}$,
當(dāng)f′(x)>0時(shí),解得x>300,當(dāng)f′(x)<0時(shí),解得0<x<300,
所以0<C<300,函數(shù)在(0,C]上單調(diào)遞減,v=C時(shí),運(yùn)行全程所需的總費(fèi)用最低;
300≤C≤400時(shí),v=300,運(yùn)行全程所需的總費(fèi)用最低.

點(diǎn)評(píng) 本題是實(shí)際應(yīng)用題,考查學(xué)生建立函數(shù)模型的能力,以及利用函數(shù)的導(dǎo)數(shù)研究給定區(qū)間上函數(shù)的最值問題,是高考的?贾R(shí)點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.觀察如圖,則第( 。┬械母鲾(shù)之和等于20152
A.2014B.2016C.1007D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)m∈R,若函數(shù)y=ex-mx在區(qū)間[1,2]的最小值為4,則m的值為e-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校高一年級(jí)共有320人,為調(diào)查高一年級(jí)學(xué)生每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間(指除了完成老師布置的作業(yè)后學(xué)生根據(jù)自己的需要進(jìn)行學(xué)習(xí)的時(shí)間)情況,學(xué)校采用隨機(jī)抽樣的方法從高一學(xué)生中抽取了n名學(xué)生進(jìn)行問卷調(diào)查.根據(jù)問卷得到了這n名學(xué)生每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間的數(shù)據(jù)(單位:分鐘),按照以下區(qū)間分為七組:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到頻率分布直方圖如圖.已知抽取的學(xué)生中每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間低于20分鐘的人數(shù)是4人.
(1)求n的值;
(2)利用頻率分布直方圖估計(jì)眾數(shù),中位數(shù)及平均數(shù)
(3)問卷調(diào)查完成后,學(xué)校從第3組和第4組學(xué)生中利用分層抽樣的方法抽取7名學(xué)生進(jìn)行座談,了解各學(xué)科的作業(yè)布置情況,并從這7人中隨機(jī)抽取兩名學(xué)生聘為學(xué)情調(diào)查聯(lián)系人.求第3組中至少有1名學(xué)生被聘為學(xué)情調(diào)查聯(lián)系人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l過直線3x+4y-5=0和2x+y=0的交點(diǎn)且與直線3x-2y-1=0垂直.
(1)求l的方程;
(2)求直線l的橫截距和縱截距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個(gè)四面體的所有棱長都等于a,則該四面體的外接球的體積等于$\frac{\sqrt{6}}{8}$πa3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC三邊長成公差為2的等差數(shù)列,且最大角的正弦值為$\frac{{\sqrt{3}}}{2}$,則這個(gè)三角形的周長是( 。
A.13B.15C.18D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)P是平行四邊形ABCD的對(duì)角線的交點(diǎn),O為任一點(diǎn),則$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=( 。
A.$4\overrightarrow{OP}$B.$3\overrightarrow{OP}$C.$2\overrightarrow{OP}$D.$\overrightarrow{OP}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.《九章算術(shù)》是我國古代著名數(shù)學(xué)經(jīng)典.其中對(duì)勾股定理的論述比西方早一千多年,其中有這樣一個(gè)問題:“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深一寸,鋸道長一尺.問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦AB=1尺,弓形高CD=1寸,估算該木材鑲嵌在墻中的體積約為(  )  (注:1丈=10尺=100寸,π≈3.14,sin22.5°≈$\frac{5}{13}$)
A.600立方寸B.610立方寸C.620立方寸D.633立方寸

查看答案和解析>>

同步練習(xí)冊(cè)答案