A. | enf(-n)<f(0),f(n)>enf(0) | B. | enf(-n)<f(0),f(n)<enf(0) | ||
C. | enf(-n)>f(0),f(n)>enf(0) | D. | enf(-n)>f(0),f(n)<enf(0) |
分析 設$g(x)=\frac{f(x)}{{e}^{x}}$,求出函數(shù)g(x)的導數(shù),得到函數(shù)的單調(diào)性,從而判斷函數(shù)值的大小即可.
解答 解:設$g(x)=\frac{f(x)}{{e}^{x}}$,
則${g}^{'}(x)=\frac{{f}^{'}(x){e}^{x}-f(x){e}^{x}}{{e}^{2x}}=\frac{{f}^{'}(x)-f(x)}{{e}^{x}}>0$,
g(x)為R上的增函數(shù),有g(-n)<g(0)<g(n),
即$\frac{f(-n)}{{e}^{-n}}<\frac{f(0)}{{e}^{0}}<\frac{f(n)}{{e}^{n}}$,
即enf(-n)<f(0),f(n)>enf(0),
故選:A.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應用,構(gòu)造函數(shù)g(x)是解題的關鍵,本題是一道基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ①④ | C. | ②③ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>c>b | B. | a>b>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com