如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點(diǎn)共圓.

證明:連接OB、BI、OC,
由O是外心知∠IOC=2∠IBC.
由I是內(nèi)心知∠ABC=2∠IBC.
從而∠IOC=∠ABC.
同理∠IOB=∠ACB.
而∠A+∠ABC+∠ACB=180°,
故∠BOC+∠A=180°,
于是O、B、A、C 四點(diǎn)共圓.
分析:如圖,連接OB、BI、OC,由O是外心知∠IOC=2∠IBC,由I是內(nèi)心知∠ABC=2∠IBC,然后利用三角形的內(nèi)角和定理即可證明∠BOC+∠A=180°,接著即可證明△BIC的外心O與A、B、C四點(diǎn)共圓.
點(diǎn)評:此題主要考查了四點(diǎn)共圓的問題,解題的關(guān)鍵是利用三角形的外心和內(nèi)心得到角的關(guān)系,然后利用三角形的內(nèi)角和解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x23
+y2=1
.如圖所示,斜率為k(k>0)且不過原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=-3于點(diǎn)D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點(diǎn);
(ii)試問點(diǎn)B,G能否關(guān)于x軸對稱?若能,求出此時△ABG的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年普通高等學(xué)校招生全國統(tǒng)一考試文科數(shù)學(xué)試題山東卷 題型:044

在平面直角坐標(biāo)系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=-3于點(diǎn)D(-3,m).

(Ⅰ)求m2+k2的最小值;

(Ⅱ)若|OG|2=|OD|·|OE|,

(i)求證:直線l過定點(diǎn);

(ii)試問點(diǎn)B,G能否關(guān)于x軸對稱?若能,求出此時△ABG的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃石市有色一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=-3于點(diǎn)D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點(diǎn);
(ii)試問點(diǎn)B,G能否關(guān)于x軸對稱?若能,求出此時△ABG的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省高考數(shù)學(xué)研討會材料--2011年高考數(shù)學(xué)試題“紅黑榜”(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=-3于點(diǎn)D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點(diǎn);
(ii)試問點(diǎn)B,G能否關(guān)于x軸對稱?若能,求出此時△ABG的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年山東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=-3于點(diǎn)D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點(diǎn);
(ii)試問點(diǎn)B,G能否關(guān)于x軸對稱?若能,求出此時△ABG的外接圓方程;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案