14.如圖在邊長(zhǎng)為1的正方形網(wǎng)格中用粗線畫出了某個(gè)多面體的三視圖,則該多面體的表面積為8+12$\sqrt{2}$.

分析 根據(jù)幾何體的三視圖,得出該幾何體是底面為等腰直角三角形,高為2的三棱錐,
畫出三棱錐的直觀圖,求出它的表面積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是底面為等腰直角三角形的三棱錐P-ABC,
且三棱錐的高PO=2,如圖所示:
∴側(cè)面△PAB的面積為S△PAB=$\frac{1}{2}×$4$\sqrt{2}$×2=4$\sqrt{2}$,
△PBC與△PAC的面積為S△PBC=S△PAC=$\frac{1}{2}$×4×$\sqrt{{2}^{2}{+2}^{2}}$=4$\sqrt{2}$,
底面△ABC的面積為S△ABC=$\frac{1}{2}$×4×4=8,
∴三棱錐的體積為S△PAB+S△PAC+S△PBC+S△ABC=8+12$\sqrt{2}$.
故答案為:8+12$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了空間幾何體的三視圖的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)三視圖得出幾何體的結(jié)構(gòu)特征,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在?ABCD中,AB=4$\sqrt{6}$cm,AD=4$\sqrt{3}$cm,∠A=45°,求這個(gè)四邊形兩條對(duì)角線的長(zhǎng)度和平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與拋物線y2=4x有一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)交點(diǎn)為P.若|PF|=$\frac{5}{2}$,則雙曲線的漸近線方程為( 。
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.袋中共有8個(gè)球,其中有3個(gè)白球,5個(gè)黑球,這些球除顏色外完全相同.從袋中隨機(jī)取出一球,如果取出白球,則把它放回袋中;如果取出黑球,則該黑球不再放回,并且另補(bǔ)一個(gè)白球放入袋中.重復(fù)上述過程n次后,袋中白球的個(gè)數(shù)記為Xn
(1)求隨機(jī)變量X2的概率分布及數(shù)學(xué)期望E(X2);
(2)求隨機(jī)變量Xn的數(shù)學(xué)期望E(Xn)關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左右頂點(diǎn)為A1,A2,左右焦點(diǎn)為F1,F(xiàn)2,P為雙曲線C上異于頂點(diǎn)的一動(dòng)點(diǎn),直線PA1斜率為k1,直線PA2斜率為k2,且k1k2=1,又△PF1F2內(nèi)切圓與x軸切于點(diǎn)(1,0),則雙曲線方程為x2-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.對(duì)于定義域和值域均為[0,1]的函數(shù)f(x),定義f1(x)=f(x)、f2(x)=f(f1(x)),…,n=1,2,3…,滿足fn(x)=x的點(diǎn)x∈[0,1]為f的n階周期點(diǎn),f(x)=$\left\{\begin{array}{l}{2x,0≤x≤\frac{1}{2}}\\{2-2x,\frac{1}{2}<x≤1}\end{array}\right.$,則f的n階周期點(diǎn)的個(gè)數(shù)是( 。
A.2nB.2(2n-1)C.2nD.2n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=ex+ax+b點(diǎn)(0,f(0))處的切線方程為x+y+1=0.
(Ⅰ)求a,b值,并求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)x≥0時(shí),f(x)>x2+4$\sqrt{x+1}$-2x-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=3sin(ωx-$\frac{π}{6}$)(ω>0)和g(x)=2cos(2x+φ)+1的圖象的對(duì)稱軸完全相同,若x∈[0,$\frac{π}{2}$],則f(x)的取值范圍是( 。
A.[-3,3]B.[-$\frac{3}{2}$,$\frac{3}{2}$]C.[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]D.[-$\frac{3}{2}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.某校開展繪畫比賽,9位評(píng)委為參賽作品A給出的分?jǐn)?shù)如莖葉圖所示.記分員在去掉一個(gè)最高分和一個(gè)最低分后,算得平均分為91,但復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無(wú)法看清.若記分員計(jì)算無(wú)誤,則數(shù)字x應(yīng)該是1.

查看答案和解析>>

同步練習(xí)冊(cè)答案