雙曲線C1=1(m>0,b>0)與橢圓C2=1(a>b>0)有相同的焦點,雙曲線C1的離心率是e1,橢圓C2的離心率是e2,則(  ).
A.B.1 C.D.2
D
在雙曲線的方程中c2m2b2,在橢圓的方程中c2a2b2,所以c2a2b2m2b2,即m2a2-2b2,所以=2.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:的左焦點為,且過點.

(1)求橢圓的方程;
(2)設過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足.
①若,求的值;
②若M、N分別為橢圓E的左、右頂點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

點P在橢圓上運動,Q、R分別在兩圓上運動,則的最小值為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓=1(0<b<2)與y軸交于A,B兩點,點F為該橢圓的一個焦點,則△ABF面積的最大值為(  ).
A.1B.2 C.4 D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知F1,F2分別為橢圓C1=1(a>b>0)的上下焦點,其中F1是拋物線C2x2=4y的焦點,點MC1C2在第二象限的交點,且|MF1|=.

(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線lyk(xt)(t≠0)交橢圓于A,B兩點,若橢圓上一點P滿足,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則方程表示(   )
A.焦點在軸上的橢圓B.焦點在軸上的橢圓
C.焦點在軸上的雙曲線D.焦點在軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦距等于(   )
A.20B.16 C.12D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的兩個焦點和短軸的兩個端點恰好為一個正方形的四個頂點,則該橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓上一點到兩個焦點之間距離的和為,其中一個焦點的坐標為,則橢圓的離心率為         .

查看答案和解析>>

同步練習冊答案