【題目】如圖1,在長方形中,為的中點,為線段上一動點.現(xiàn)將沿折起,形成四棱錐.
(1)若與重合,且(如圖2).證明:平面;
(2)若不與重合,且平面平面 (如圖3),設(shè),求的取值范圍.
【答案】(1)見解析;
(2).
【解析】
(1)由AD⊥BD,AD⊥DE,BD∩DE=D,可得AD⊥平面BDE,可得AD⊥BE.由E與O重合,可得△ADE與△BCE都為等腰直角三角形,可得BE⊥AE.即可證明結(jié)論.
(2)過E點作EH⊥AB,垂足為H,并連接DH,證明EH⊥DH,設(shè)CE=x,則DE=4﹣x,在Rt△DHB中列出t關(guān)于x的函數(shù)關(guān)系式,利用二次函數(shù)求最值即可
(1)由與重合,則有, 因為AD⊥BD,,所以平面,,
,所以平面.
(2)如圖過E點作EH⊥AB,垂足為H,并連接DH,
又∵平面ABD⊥平面ABC,平面ABD∩平面ABC=AB,EH平面ABC,
∴EH⊥平面ABD,∵DH平面ABD,∴EH⊥DH,
設(shè)CE=x,則DE=4﹣x,
∵BC⊥AB,∴BC∥EH,又CE∥AB,∴BH=x,EH=2,
∴在Rt△DHE中,DH,
∴在Rt△DHB中,t,
∵x∈[0,2),∴t∈.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-中,平面ABC,D,E,F,G分別為,AC,,的中點,AB=BC=,AC==2.
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視臺應(yīng)某企業(yè)之約播放兩套連續(xù)劇,其中,連續(xù)劇甲每次播放時間80分鐘,其中廣告時間1分鐘,收視觀眾60萬;連續(xù)劇乙每次播放時間40分鐘,其中廣告時間1分鐘,收視觀眾20萬.現(xiàn)在企業(yè)要求每周至少播放廣告6分鐘,而電視臺每周至多提供320分鐘節(jié)目時間.
(1)設(shè)每周安排連續(xù)劇甲次,連續(xù)劇乙次,列出,所應(yīng)該滿足的條件;
(2)應(yīng)該每周安排兩套電視劇各多少次,收視觀眾最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點的坐標(biāo)為.
(1)求點的坐標(biāo);
(2)求函數(shù)的單調(diào)增區(qū)間及對稱軸方程;
(3)若把方程的正實根從小到大依次排列為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點和直線,為曲線上一點,為點到直線的距離且滿足.
(1)求曲線的軌跡方程;
(2)過點作曲線的兩條動弦,若直線斜率之積為,試問直線是否一定經(jīng)過一定點?若經(jīng)過,求出該定點坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若關(guān)于的方程只有一個實數(shù)解,求實數(shù)的取值范圍;
(2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的偶函數(shù),當(dāng)時,.
(1)求的函數(shù)解析式;
(2)作出的草圖,并求出當(dāng)函數(shù)有個不同零點時,的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形,,,現(xiàn)將沿折起,當(dāng)二面角的大小在時,直線和所成角為,則的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨立性檢驗的方法調(diào)查高中生性別與愛好某項運動是否有關(guān),通過隨機(jī)調(diào)查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)”
B. 有99%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”
C. 在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”
D. 在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com