【題目】【河南省部分重點中學2017屆高三上學期第一次聯(lián)考】在平面直角坐標系,已知圓.

直線且被圓得的弦,求直線方程;

平面直角坐標系上的點,滿足:存在過點無窮多對相互垂直的直線它們分別與

交,且直線得的弦長與直線得的弦長相等,試求所有滿足條件的點

坐標.

【答案】(;.

【解析】

試題分析:(設所求直線為,由垂徑定理得直線方程為;坐標為,直線方程分別設為:,由點到直線的距離公式得,故,得點坐標為.

試題解析:直線方程為

坐標為直線方程分別設為:

,,

題意得,

簡得,關(guān)方程有無窮多解,

,得點坐標為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品每件成本為6元,每件售價為元(),年銷售萬件,若已知成正比,且售價為10元時,年銷量為28萬件.

(1)求年銷售利潤關(guān)于售價的函數(shù)關(guān)系式.

(2)求售價為多少時,年利潤最大,并求出最大年利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表(單位:輛):按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.

轎車

轎車

轎車

舒適型

100

150

標準型

300

450

600

(1)求的值;

(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取

2輛,求至少有1輛舒適型轎車的概率;

(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:. 把這8輛轎車的得分看成一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對 值不超過的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設m,n是兩條不同的直線,α,β是兩個不同的平面,則下列敘述正確的是( )
A.若α∥β,m∥α,n∥β,則m∥n
B.若α⊥β,m⊥α,n∥β,則m⊥n
C.若m∥α,n∥α,m∥β,n∥β,m⊥n,則α∥β
D.若m⊥α,nβ,m⊥n,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (x∈R),給出下面四個命題:
①函數(shù)f(x)的圖象一定關(guān)于某條直線對稱;
②函數(shù)f(x)在R上是周期函數(shù);
③函數(shù)f(x)的最大值為 ;
④對任意兩個不相等的實數(shù) ,都有 成立.
其中所有真命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設要抽查某企業(yè)生產(chǎn)的某種品牌的袋裝牛奶的質(zhì)量是否達標,現(xiàn)從700袋牛奶中抽取50袋進行檢驗,利用隨機數(shù)表抽取樣本時,先將700袋牛奶按001,002,…,700進行編號,如果從隨機數(shù)表第3行第1組開始向右讀,最先讀到的5袋牛奶的編號是614,593,379,242,203,請你以此方式繼續(xù)向右讀數(shù),隨后讀出的3袋牛奶的編號是________.(下列摘取了隨機數(shù)表第1行至第5行)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=sin(2ωx+ )(其中ω>0),且f(x)的圖象在y軸右側(cè)的第一個最高點的橫坐標是
(1)求y=f(x)的最小正周期及對稱軸;
(2)若x∈ ,函數(shù) ﹣af(x)+1的最小值為0.求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定

查看答案和解析>>

同步練習冊答案