分析 (1)由數(shù)列{an}滿足a1=-1,${a_{n+1}}=\frac{{(3n+3){a_n}+4n+6}}{n},n∈{N^*}$.可得$\frac{{a}_{n+1}+2}{n+1}$=$\frac{\frac{(3n+3){a}_{n}+4n+6}{n}}{n+1}$=3×$\frac{{a}_{n}+2}{n}$.即可證明.
(2)由(1)可得:an+2=n•3n-1.bn=$\frac{{3}^{n-1}}{{a}_{n}+2}$=$\frac{1}{n}$.當(dāng)n≥2,n∈N*時(shí),bn+1+bn+2+…+b2n=$\frac{1}{n+1}+\frac{1}{n+2}$+…+$\frac{1}{2n}$,利用數(shù)學(xué)歸納法證明:${b_{n+1}}+{b_{n+2}}+…+{b_{2n}}<\frac{4}{5}-\frac{1}{2n+1}$即可.
解答 證明:(1)∵數(shù)列{an}滿足a1=-1,${a_{n+1}}=\frac{{(3n+3){a_n}+4n+6}}{n},n∈{N^*}$.
∴$\frac{{a}_{n+1}+2}{n+1}$=$\frac{\frac{(3n+3){a}_{n}+4n+6}{n}}{n+1}$=3×$\frac{{a}_{n}+2}{n}$.
$\frac{{a}_{1}+2}{1}$=1,∴數(shù)列$\left\{{\frac{{{a_n}+2}}{n}}\right\}$是等比數(shù)列,首項(xiàng)為1,公比為3.
(2)由(1)可得:$\frac{{a}_{n}+2}{n}$=3n-1,可得an+2=n•3n-1.
bn=$\frac{{3}^{n-1}}{{a}_{n}+2}$=$\frac{1}{n}$.
∴當(dāng)n≥2,n∈N*時(shí),bn+1+bn+2+…+b2n=$\frac{1}{n+1}+\frac{1}{n+2}$+…+$\frac{1}{2n}$
下面利用數(shù)學(xué)歸納法證明:${b_{n+1}}+{b_{n+2}}+…+{b_{2n}}<\frac{4}{5}-\frac{1}{2n+1}$.
①當(dāng)n=2時(shí),b3+b4=$\frac{1}{3}+\frac{1}{4}$=$\frac{7}{12}$<$\frac{3}{5}$=$\frac{4}{5}-\frac{1}{5}$.
②假設(shè)n=k∈N*,k≥2.bk+1+bk+2+…+b2k<$\frac{4}{5}$-$\frac{1}{2k+1}$.
則n=k+1時(shí),bk+2+bk+3+…+b2k+b2k+1+b2k+2<$\frac{4}{5}$-$\frac{1}{2k+1}$+$\frac{1}{2k+1}$+$\frac{1}{2k+2}$-$\frac{1}{k+1}$=$\frac{4}{5}$-$\frac{1}{2k+2}$<$\frac{4}{5}$-$\frac{1}{2k+3}$.
∴n=k+1時(shí),假設(shè)成立.
綜上可得:當(dāng)n≥2,n∈N*時(shí),${b_{n+1}}+{b_{n+2}}+…+{b_{2n}}<\frac{4}{5}-\frac{1}{2n+1}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的定義通項(xiàng)公式、“放縮”方法、數(shù)學(xué)歸納法、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等于$\frac{{\sqrt{3}}}{2}$ | B. | 等于$-\frac{{\sqrt{3}}}{2}$ | C. | 等于$±\frac{{\sqrt{3}}}{2}$ | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 15 | C. | 8 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.001 | B. | 0.1 | C. | 0.2 | D. | 0.3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com