【題目】已知數(shù)列的前n項的和Sn,點(n,Sn)在函數(shù)=2x2+4x圖象上

(1)證明是等差數(shù)列;

(2)若函數(shù),數(shù)列{bn}滿足bn=,記cn=anbn,求數(shù)列前n項和Tn

(3)是否存在實數(shù)λ,使得當(dāng)x≤λ時,f(x)=﹣x2+4x﹣≤0對任意n∈N*恒成立?若存在,求出最大的實數(shù)λ,若不存在,說明理由.

【答案】(1) 數(shù)列{an}的通項公式為an=4n+2;(2) Tn=10﹣(2n+5) ;(3) 實數(shù)λ=1,見解析.

【解析】試題分析:(1)要求數(shù)列的通項公式,利用,然后把 代入驗證;
(2)由函數(shù) ,數(shù)列滿足 ,利用錯位相減法可得數(shù)列{ 項和
(3)假設(shè)存在實數(shù) ,使得當(dāng) 時,

對任意 恒成立,即對任意恒成立,由

是遞增數(shù)列,能推導(dǎo)出存在最大的實數(shù) ,使得當(dāng) 時, 對任意恒成立

試題解析;(1)由題意,Sn=2n2+4n,

當(dāng)n=1時,a1=S1=6,

n≥2時,an=Sn﹣Sn﹣1=(2n2+4n)﹣[2(n﹣1)2+4(n﹣1)]=4n+2,

當(dāng)n=1時,a1=S1=4+2=6,也適合上式

∴數(shù)列{an}的通項公式為an=4n+2,n∈N*是等差數(shù)列

(2)∵函數(shù)g(x)=2﹣x,

∴數(shù)列{bn}滿足bn=g(n)=2﹣n

又∵cn=anbn,

∴Tn=6×2﹣1+10×2﹣2+14×2﹣3+…+(4n+2)×2﹣n,…①,

Tn=6×2﹣2+10×2﹣3+…+(4n﹣2)×2﹣n+(4n+2)×2﹣(n+1),…②,

①﹣②得:

(3)假設(shè)存在實數(shù)λ,使得當(dāng)x≤λ時,對任意

n∈N*恒成立,即任意n∈N*恒成立,

∵an=4n+2,是遞增數(shù)列,

所以只要﹣x2+4x≤c1,即x2﹣4x+3≥0,解得x≤1或x≥3.

所以存在最大的實數(shù)λ=1,使得當(dāng)x≤λ時,f(x)≤cn對任意n∈N*恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均為正數(shù)的等比數(shù)列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項和第5項,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PD⊥底面ABCD,點E在棱PB上.

(1)求證:平面AEC⊥平面PDB;

(2)當(dāng)PD=AB,且E為PB的中點時,求AE與平面PDB所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<0,函數(shù)f(x)=acosx+ + ,其中x∈[﹣ , ].
(1)設(shè)t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)g(t);
(2)求函數(shù)f(x)的最大值(可以用a表示);
(3)若對區(qū)間[﹣ , ]內(nèi)的任意x1 , x2 , 總有|f(x1)﹣f(x2)|≤1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)M=( ﹣1)( ﹣1)( ﹣1)滿足a+b+c=1(其中a>0,b>0,c>0),則M的取值范圍是(
A.[0,
B.[ ,1)
C.[1,8)
D.[8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(2,1), =(1,7), =(5,1),設(shè)R是直線OP上的一點,其中O是坐標(biāo)原點.
(1)求使 取得最小值時 的坐標(biāo)的坐標(biāo);
(2)對于(1)中的點R,求 夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體

求證:(ⅰ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種,若普通6座以下私家車投保交強(qiáng)險第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時,實行的是費(fèi)率浮動機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如下表:

交強(qiáng)險浮動因素和浮動費(fèi)率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個年度未發(fā)生責(zé)任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)購為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續(xù)保時保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

同步練習(xí)冊答案