已知S={y|y=2x},T={x|y=lg(x-1)},則S∩T=( 。
分析:先根據函數(shù)的值域和定義域化簡集合S,T,再計算S∩T即可.
解答:解:由已知易得S={y∈R|y≥0},
T={x∈R|x>1},
∴S∩T=(1,+∞).
故選C.
點評:本題主要考查了集合的交運算,化簡計算即可,比較簡單.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點F是橢圓
x2
1+a2
+y2=1(a>0)
右焦點,點M(m,0)、N(0,n)分別是x軸、y軸上的動點,且滿足
MN
NF
=0
,若點P滿足
OM
=2
ON
+
PO

(1)求P點的軌跡C的方程;
(2)設過點F任作一直線與點P的軌跡C交于A、B兩點,直線OA、OB與直線x=-a分別交于點S、T(其中O為坐標原點),試判斷
FS
FT
是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點S過點T(0,2)且被x軸截得的弦CD長為4.
(1)求動圓圓心S的軌跡E的方程;
(2)設P是直線l:y=x-2上任意一點,過P作軌跡E的切線PA,PB,A,B是切點,求證:直線AB恒過定點M;
(3)在(2)的條件下,過定點M作直線:y=x-2的垂線,垂足為N,求證:MN是∠ANB的平分線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=-x2+2過其上一點P引拋物線的切線l,l與坐標軸在第一象限圍成△AOB,求△AOB面積S的最小值,并求此時切線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所滿足的關系式記為y=f(x).若f′(x)為f(x)的導函數(shù),F(xiàn)(x)=f(x)+af'(x)(a>0),且F(x)是R上的奇函數(shù).
(Ⅰ)求數(shù)學公式的值;
(Ⅱ)求函數(shù)f(x)的單調遞減區(qū)間(用字母a表示);
(Ⅲ)當a=2時,設0<t<4且t≠2,曲線y=f(x)在點A(t,f(t))處的切線與曲線y=f(x)相交于點B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點C,△ABC的面積為S,試用t表示△ABC的面積S(t);并求S(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011學年浙江省杭州二中高考數(shù)學第一次仿真試卷(文科)(解析版) 題型:解答題

已知動點S過點T(0,2)且被x軸截得的弦CD長為4.
(1)求動圓圓心S的軌跡E的方程;
(2)設P是直線l:y=x-2上任意一點,過P作軌跡E的切線PA,PB,A,B是切點,求證:直線AB恒過定點M;
(3)在(2)的條件下,過定點M作直線:y=x-2的垂線,垂足為N,求證:MN是∠ANB的平分線.

查看答案和解析>>

同步練習冊答案