已知f(x),g(x)都是定義在R上的函數(shù),g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=axg(x)(a>0且a≠1),=.若數(shù)列的前n項(xiàng)和大于62,則n的最小值為( )
A.6 B.7 C.8 D.9
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
描述學(xué)習(xí)某學(xué)科知識的掌握程度.其中表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實(shí)數(shù)a與學(xué)科知識有關(guān)
(1)證明:當(dāng)x 7時,掌握程度的增長量f(x+1)- f(x)總是下降;
(2)根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為(115,121],(121,127],
(127,133].當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,上頂點(diǎn)為B,O為坐標(biāo)原點(diǎn),M為橢圓上任意一點(diǎn),過F,B,A三點(diǎn)的圓的圓心坐標(biāo)為(p,q).
(1)當(dāng)p+q≤0時,求橢圓的離心率的取值范圍;
(2)若點(diǎn)D(b+1,0),在(1)的條件下,當(dāng)橢圓的離心率最小時,的最小值為,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,動點(diǎn)P到定點(diǎn)(1,0)的距離與到定直線x=2的距離之比為,設(shè)動點(diǎn)P的軌跡為C.
(1)求出軌跡C的方程;
(2)設(shè)動直線l:y=kx-與曲線C交于A,B兩點(diǎn),問在y軸上是否存在定點(diǎn)G,使∠AGB為直角?若存在,求出G的坐標(biāo),并求△AGB面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
給出定義:若函數(shù)f(x)在D上可導(dǎo),即f′(x)存在,且導(dǎo)數(shù)f′(x)在D上也可導(dǎo),則稱f(x)在D上存在二階導(dǎo)函數(shù),記f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數(shù).以下四個函數(shù)在上不是凸函數(shù)的是( )
A.f(x)=sin x+cos x
B.f(x)=ln x-2x
C.f(x)=-3x3+2x-1
D.f(x)=xex
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=x(x-a)(x-b)的導(dǎo)函數(shù)為f′(x),且f′(0)=4,則a2+2b2的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)y=f(x)是R上的可導(dǎo)函數(shù),當(dāng)x≠0時,有f′(x)+>0,則函數(shù)F(x)=xf(x)+的零點(diǎn)個數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
過空間任意一點(diǎn)引三條直線,它們所確定的平面?zhèn)數(shù)是 ( )
A. 1 B. 2 C. 3 D. 1或3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com