定長為3的線段AB的兩個端點在=x上移動,AB的中點為M,求點M到y(tǒng)軸的最短距離,并求出此時點M的坐標.

答案:
解析:

解:如圖,設(shè)A(),B(),M(x,y)則

,又設(shè)點A,B,M在準線   

 

   l:x=-上的射影分別為與y軸的交點為N,則|AF|=||=,|BF|=(等號在AB過焦點F時成立),此時直線AB的方程為y=k

16=0.依題意=3.而,∴=3,∴.此時x=.即M點的坐標為


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定長為3的線段AB的兩端點在拋物線y2=x上移動,記線段AB的中點為M,求點M到y(tǒng)軸的最短距離,并求此時點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定長為3的線段AB的兩個端點在拋物線y2=x上移動,AB的中點為M,求點M到y(tǒng)軸的最短距離,并求出點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省孝感高中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

定長為3的線段AB兩端點A、B分別在x軸,y軸上滑動,M在線段AB上,且
(1)求點M的軌跡C的方程;
(2)設(shè)過且不垂直于坐標軸的動直線l交軌跡C于A、B兩點,問:線段OF上是否存在一點D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省武漢二中、龍泉中學聯(lián)考高二(下)期末數(shù)學試卷(理科)(解析版) 題型:解答題

定長為3的線段AB兩端點A、B分別在x軸,y軸上滑動,M在線段AB上,且
(1)求點M的軌跡C的方程;
(2)設(shè)過且不垂直于坐標軸的動直線l交軌跡C于A、B兩點,問:線段OF上是否存在一點D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

同步練習冊答案