已知函數(shù)數(shù)學(xué)公式
(1)判斷函數(shù)f(x)在(-1,1)上的單調(diào)性,并用單調(diào)性的定義加以證明;
(2)若a=1,求函數(shù)f(x)在數(shù)學(xué)公式上的值域.

解:(1)當(dāng)a>0時(shí),設(shè)-1<x1<x2<1
==
∵x1-1<0,x2-1<0,a(x1-x2)<0
>0,得f(x1)>f(x2),函數(shù)f(x)在(-1,1)上是減函數(shù);
同理可得,當(dāng)a<0時(shí),函數(shù)f(x)在(-1,1)上是增函數(shù).
(2)當(dāng)a=1時(shí),由(1)得f(x)=在(-1,1)上是減函數(shù)
∴函數(shù)f(x在上也是減函數(shù),其最小值為f()=-1,最大值為f(-)=
由此可得,函數(shù)f(x)在上的值域?yàn)閇-1,].
分析:(1)根據(jù)單調(diào)性的定義,進(jìn)行作差變形整理,可得當(dāng)a>0時(shí),函數(shù)f(x)在(-1,1)上是減函數(shù),當(dāng)a<0時(shí),函數(shù)f(x)在(-1,1)上是增函數(shù);
(2)根據(jù)(1)的單調(diào)性,算出函數(shù)在在上的最大值和最小值,由此即可得到f(x)在上的值域.
點(diǎn)評(píng):本題給出分式函數(shù),討論了函數(shù)的單調(diào)性并求函數(shù)在閉區(qū)間上的值域,著重考查了函數(shù)單調(diào)性的判斷與證明和函數(shù)的值域等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆陜西省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題12分)已知函數(shù),

(1)判斷函數(shù)在區(qū)間上的單調(diào)性;

(2)求函數(shù)在區(qū)間是區(qū)間[2,6]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省江門(mén)市臺(tái)山僑中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)
(1)判斷f(x)的奇偶性;(2)若,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)判斷函數(shù)的奇偶性;(4分)

(2)若關(guān)于的方程有兩解,求實(shí)數(shù)的取值范圍;(6分)

(3)若,記,試求函數(shù)在區(qū)間上的最大值.(10分)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年遼寧省營(yíng)口市高一上學(xué)期期末檢測(cè)數(shù)學(xué)試卷 題型:解答題

(本小題滿(mǎn)分12分)

 已知函數(shù)

(1)判斷其奇偶性;

(2)指出該函數(shù)在區(qū)間(0,1)上的單調(diào)性并證明;

(3)利用(1)、(2)的結(jié)論,指出該函數(shù)在(-1,0)上的增減性.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省四地六校高二下學(xué)期第二次聯(lián)考數(shù)學(xué)(文科)試題 題型:解答題

(本小題滿(mǎn)分12分)已知函數(shù),

(1)判斷函數(shù)的奇偶性;(2)求證:方程至少有一根在區(qū)間

 

查看答案和解析>>

同步練習(xí)冊(cè)答案