【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,=Sn+1+Sn.

(1)求{an}的通項(xiàng)公式;

(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn.

【答案】(1) ; (2).

【解析】

(1)a=Sn+1+Sn①,當(dāng)n≥2時(shí),a=Sn+Sn-1②,①-②得a-a=an+1+an可推出an+1-an=1,即可求解(2)利用錯(cuò)位相減法求和即可.

(1)因?yàn)閍=Sn+1+Sn,①

所以當(dāng)n≥2時(shí),a=Sn+Sn-1,②

①-②得a-a=an+1+an,即(an+1+an)(an+1-an)=an+1+an,

因?yàn)閍n>0,所以an+1-an=1,所以數(shù)列{an}從第二項(xiàng)起,是公差為1的等差數(shù)列.

由①知a=S2+S1,因?yàn)閍1=1,所以a2=2,

所以當(dāng)n≥2時(shí),an=2+(n-2)×1,即an=n.③

又因?yàn)閍1=1也滿足③式,所以an=n(n∈N*).

(2)由(1)得=(2n-1)·2n,Tn=2+3·22+5·23+…+(2n-1)·2n,④

2Tn=22+3·23+…+(2n-3)·2n+(2n-1)·2n+1,⑤

④-⑤得-Tn=2+2×22+…+2×2n-(2n-1)·2n+1,

所以-Tn=2+-(2n-1)·2n+1

故Tn=(2n-3)·2n+1+6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題14分)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):


3

4

5

6


2.5

3

4

4.5

1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;并指出x,y 是否線性相關(guān);

2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

(參考:用最小二乘法求線性回歸方程系數(shù)公式,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1的參數(shù)方程為 ,當(dāng)t=﹣1時(shí),對(duì)應(yīng)曲線C1上一點(diǎn)A,且點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B.以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為
(1)求A,B兩點(diǎn)的極坐標(biāo);
(2)設(shè)P為曲線C2上的動(dòng)點(diǎn),求|PA|2+|PB|2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a2=3,S6=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓C: + =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2 , 離心率為 ,以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓與直線x﹣y+ =0相切,過(guò)點(diǎn)F2的直線l與橢圓C相交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)若 =3 ,求直線l的方程;
(3)求△F1MN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}前三項(xiàng)的和為﹣3,前三項(xiàng)的積為8.
(I)求等差數(shù)列{an}的通項(xiàng)公式;
(II)若a2 , a3 , a1成等比數(shù)列,求數(shù)列{|an|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),l是過(guò)點(diǎn)A與x軸垂直的直線,D是直線l與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
(Ⅱ)過(guò)原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: + =1(a>b>0)過(guò)點(diǎn) ,且離心率e為

(1)求橢圓E的方程;
(2)設(shè)直線x=my﹣1(m∈R)交橢圓E于A,B兩點(diǎn),判斷點(diǎn)G 與以線段AB為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:=1(a>b>0)的離心率e=,點(diǎn)P(-,1)在該橢圓上.

(1)求橢圓C的方程;

(2)若點(diǎn)A,B是橢圓C上關(guān)于直線y=kx+1對(duì)稱的兩點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案