如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,平面平面ABCD,四邊形ACFE是矩形,AE=a.
(1)求證:平面ACFE;
(2)求二面角B—EF—D的平面角的余弦值.
(1)見解析;(2).

試題分析:(1)由已知可得四邊形是等腰梯形,
,得到.
再根據(jù)平面平面,交線為,即得證.
(2)根據(jù)已有垂直關(guān)系,以點(diǎn)為原點(diǎn),所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系,則
過(guò),垂足為.令
根據(jù)已有關(guān)系確定得到,
二面角的大小就是向量與向量所夾的角.   
證明:(1)在梯形中,,
,四邊形是等腰梯形,

 
平面平面,交線為,
平面                                                 5分
(2)由(1)知,以點(diǎn)為原點(diǎn),所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系,則


過(guò),垂足為.令


得,,即     

二面角的大小就是向量與向量所夾的角.   

即二面角的平面角的余弦值為.                     12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在棱長(zhǎng)為2的正方體中,分別是棱的中點(diǎn),點(diǎn)分別在棱,上移動(dòng),且.
當(dāng)時(shí),證明:直線平面;
是否存在,使平面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在斜三棱柱中,平面平面ABC,,.
(1)求證:;
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(1)證明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形A1BA2C的邊長(zhǎng)為4,D是A1B的中點(diǎn),E是BA2上的點(diǎn),將△A1DC
及△A2EC分別沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.
(1)求證:AC⊥DE;

(2)求二面角A-DE-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點(diǎn).沿直線BD將△BCD翻折成△BCD,使得平面BCD平面ABD.

(1)求證:C'D平面ABD;
(2)求直線BD與平面BEC'所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在空間直角坐標(biāo)系中,若兩點(diǎn)間的距離為10,則__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正方體中,點(diǎn)E為的中點(diǎn),則平面與平面ABCD所成的銳二面角的余弦值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知向量a=(4,-2,-4),b=(6,-3,2),則(a+b)·(a-b)的值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案