求曲線y=
3x
在原點(diǎn)處的切線方程.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)f(x)在x=0的導(dǎo)數(shù),從而求出切線的斜率,再用點(diǎn)斜式寫出切線方程;
解答: 解:y=
3x
的導(dǎo)數(shù)y′=
1
3
x-
2
3
,
x=0時(shí),導(dǎo)數(shù)不存在,切線的斜率不存在,所以所求切線方程為x=0.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)處的切線方程等基礎(chǔ)知識(shí),屬于中檔題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等差數(shù)列{an}的前n項(xiàng)和為Sn,且S9=24π,則tana5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是函數(shù)y=lnx圖象上的動(dòng)點(diǎn),則點(diǎn)P到直線y=x的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O于A,AD切⊙O于A,∠BAD=60°,則∠ACB=( 。
A、120°B、150°
C、90°D、100°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+
m
2
]在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)若x1、x2∈[1,+∞),試比較ln(x1x2)與x1+x2-2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)三月中旬生產(chǎn)A、B、C三種產(chǎn)品共3000件,根據(jù)分層抽樣的結(jié)果,企業(yè)統(tǒng)計(jì)員制作了如下的統(tǒng)計(jì)表格.由于不小心,表格中A、C產(chǎn)品的有關(guān)數(shù)據(jù)己被污染看不清楚,統(tǒng)計(jì)員記得A產(chǎn)品的樣本容量比C產(chǎn)品的樣本容量多10件,根據(jù)以上信息,可得C產(chǎn)品的數(shù)量是(  )
產(chǎn)品類別ABC
產(chǎn)品數(shù)量(件)1300
樣本容量(件)130
A、900件B、800件
C、90件D、80件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù),C2
x=6cosθ
y=2sinθ
(θ為參數(shù)).
(Ⅰ)C1、C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(Ⅱ)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)t=
π
2
,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3
x=-3
3
+
3
t
y=-3-t
(t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若以點(diǎn)F1(-2,0)、F2(2,0)為焦點(diǎn)的雙曲線C過(guò)直線l:x+y-1=0上一點(diǎn)M,則能使所作雙曲線C的實(shí)軸長(zhǎng)最長(zhǎng)時(shí)的雙曲線方程為(  )
A、x2-
y2
3
=1
B、
x2
2
-
y2
2
=1
C、
x2
7
2
-
y2
1
2
=1
D、
x2
5
2
-
y2
3
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在xOy平面內(nèi)的直線x+y=1上確定一點(diǎn)M,則M到空間直角坐標(biāo)系Oxyz的點(diǎn)N(2,3,1)的最小距離為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案