在數(shù)列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*),則數(shù)列{an}的通項(xiàng)為an=
 
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由首項(xiàng)結(jié)合數(shù)列遞推式求出第二項(xiàng)和第三項(xiàng),然后構(gòu)造等差數(shù)列{
an-1
3n
},求出其首項(xiàng)和公差,寫出其通項(xiàng)公式,則數(shù)列{an}的通項(xiàng)公式可求.
解答: 解:由a1=
7
2
,an=3an-1+3n-1,得
a2=3×
7
2
+8=
37
2
,
a3=3×
37
2
+28=
167
2

設(shè)
an
3n
=xn+y
,
7
2
=3x+3y-λ
37
2
=18x+9y-λ
167
2
=81x+27y-λ

解得:x=
10
9
,y=-
5
18
,λ=-1

an-1
3n
=
10
9
n-
5
18
,
即數(shù)列{
an-1
3n
}構(gòu)成以
5
6
為首項(xiàng),以
10
9
為公差的等差數(shù)列.
an-1
3n
=
5
6
+
10
9
(n-1)=
10
9
n-
5
18

an=(
10
9
n-
5
18
)•3n+1

故答案為:(
10
9
n-
5
18
)•3n+1
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了利用構(gòu)造法求數(shù)列的通項(xiàng)公式,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-12x在[-3,3]上的最小值是
 
,最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解某市今年準(zhǔn)備報(bào)考體育專業(yè)的學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,則第2小組的頻率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖陰影部分是圓O的內(nèi)接正方形,隨機(jī)撒314粒黃豆,則預(yù)測黃豆落在正方形內(nèi)的約
 
粒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意實(shí)數(shù)x>0,y>0,若不等式x+
xy
≤a(x+2y)恒成立,則實(shí)數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}的公比q=2,若存在兩項(xiàng)am,an,使得
aman
=4a1,則
1
m
+
4
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1-2i
1+2i
的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α∈(
π
2
,π),tan(α+
π
6
)=
1
7
,求sin(2α+
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=loga(x3-ax)(a>0且a≠1)在區(qū)間(-
1
4
,0)內(nèi)單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A、[
2
3
,1)
B、[
3
16
,1)
C、[
3
16
,1)∪(1,3]
D、(1,3]

查看答案和解析>>

同步練習(xí)冊答案