成都七中為綠化環(huán)境,移栽了銀杏樹(shù)2棵,梧桐樹(shù)3棵。它們移栽后的成活率分別為且每棵樹(shù)是否存活互不影響,求移栽的5棵樹(shù)中:
(1)銀杏樹(shù)都成活且梧桐樹(shù)成活2棵的概率;
(2)成活的棵樹(shù)的分布列與期望.

(1);(2)的分布列為:


0
1
2
3
4
5







解析試題分析:(1) “銀杏樹(shù)都成活且梧桐樹(shù)成活2棵”即“銀杏樹(shù)成活2棵”和 “梧桐樹(shù)恰好成活2棵”這兩個(gè)事件同時(shí)發(fā)生,因?yàn)檫@兩個(gè)事件相互獨(dú)立,所以獨(dú)立事件同時(shí)發(fā)生的概率公式便可知,將這兩個(gè)事件發(fā)生的概率相乘便得“銀杏樹(shù)都成活且梧桐樹(shù)成活2棵”這個(gè)事件的概率;
(2)因?yàn)橐还灿?棵樹(shù),所以可能的取值為:.由概率公式求出的各個(gè)取值的概率,便得其分布列及期望.
試題解析:(1)設(shè)表示“銀杏樹(shù)都成活且梧桐樹(shù)成活2棵”
設(shè)表示“銀杏樹(shù)成活棵”;;
表示“梧桐樹(shù)成活棵”;;;                        3分
                 5分
(2)可能的取值:
同理:;;;
             7分
的分布列為:


0
1
2
3
4
5







                                                  10分
                            12分
考點(diǎn):1、古典概型;2、隨機(jī)變量的分布列及其期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

受轎車(chē)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車(chē)的利潤(rùn)與該轎車(chē)首次出現(xiàn)故障的時(shí)間有關(guān).某轎車(chē)制造廠生產(chǎn)甲、乙兩種品牌轎車(chē),保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車(chē)中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌


首次出現(xiàn)故
障時(shí)間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車(chē)數(shù)量(輛)
2
3
45
5
45
每輛利潤(rùn)
(萬(wàn)元)
1
2
3
1.8
2.9
將頻率視為概率,解答下列問(wèn)題:
(1)從該廠生產(chǎn)的甲品牌轎車(chē)中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.
(2)若該廠生產(chǎn)的轎車(chē)均能售出,記生產(chǎn)一輛甲品牌轎車(chē)的利潤(rùn)為X1,生產(chǎn)一輛乙品牌轎車(chē)的利潤(rùn)為X2,分別求X1,X2的分布列.
(3)該廠預(yù)計(jì)今后這兩種品牌轎車(chē)銷(xiāo)量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車(chē).若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車(chē)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商家推出一款簡(jiǎn)單電子游戲,彈射一次可以將三個(gè)相同的小球隨機(jī)彈到一個(gè)正六邊形的頂點(diǎn)與中心共七個(gè)點(diǎn)中的三個(gè)位置上(如圖),用S表示這三個(gè)球?yàn)轫旤c(diǎn)的三角形的面積.規(guī)定:當(dāng)三球共線時(shí),S=0;當(dāng)S最大時(shí),中一等獎(jiǎng),當(dāng)S最小時(shí),中二等獎(jiǎng),其余情況不中獎(jiǎng),一次游戲只能彈射一次.

(1)求甲一次游戲中能中獎(jiǎng)的概率;
(2)設(shè)這個(gè)正六邊形的面積是6,求一次游戲中隨機(jī)變量S的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

據(jù)民生所望,相關(guān)部門(mén)對(duì)所屬單位進(jìn)行整治性核查,標(biāo)準(zhǔn)如下表:

規(guī)定初查累計(jì)權(quán)重分?jǐn)?shù)為10分或9分的不需要復(fù)查并給予獎(jiǎng)勵(lì),10分的獎(jiǎng)勵(lì)18萬(wàn)元;9分的獎(jiǎng)勵(lì)8萬(wàn)元;初查累計(jì)權(quán)重分?jǐn)?shù)為7分及其以下的停下運(yùn)營(yíng)并罰款1萬(wàn)元;初查累計(jì)權(quán)重分?jǐn)?shù)為8分的要對(duì)不合格指標(biāo)進(jìn)行復(fù)查,最終累計(jì)權(quán)重得分等于初查合格部分與復(fù)查部分得分的和,最終累計(jì)權(quán)重分?jǐn)?shù)為10分方可繼續(xù)運(yùn)營(yíng),否則停業(yè)運(yùn)營(yíng)并罰款1萬(wàn)元.
(1)求一家單位既沒(méi)獲獎(jiǎng)勵(lì)又沒(méi)被罰款的概率;
(2)求一家單位在這次整治性核查中所獲金額X(萬(wàn)元)的分布列和數(shù)學(xué)期望(獎(jiǎng)勵(lì)為正數(shù),罰款為負(fù)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一中食堂有一個(gè)面食窗口,假設(shè)學(xué)生買(mǎi)飯所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,對(duì)以往學(xué)生買(mǎi)飯所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:

買(mǎi)飯時(shí)間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第一個(gè)學(xué)生開(kāi)始買(mǎi)飯時(shí)計(jì)時(shí).
(Ⅰ)求第2分鐘末沒(méi)有人買(mǎi)晚飯的概率;
(Ⅱ)估計(jì)第三個(gè)學(xué)生恰好等待4分鐘開(kāi)始買(mǎi)飯的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4。
(Ⅰ)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號(hào)之和不大于4的概率;
(Ⅱ)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為,求+2的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某市職教中心組織廚師技能大賽,大賽依次設(shè)基本功(初賽)、面點(diǎn)制作(復(fù)賽)、熱菜烹制(決賽)三個(gè)輪次的比賽,已知某選手通過(guò)初賽、復(fù)賽、決賽的概率分別是,,且各輪次通過(guò)與否相互獨(dú)立.
(I)設(shè)該選手參賽的輪次為,求的分布列和數(shù)學(xué)期望;
(Ⅱ)對(duì)于(I)中的,設(shè)“函數(shù)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

淮南八公山某種豆腐食品是經(jīng)過(guò)A、B、C三道工序加工而成的,A、B、C工序的產(chǎn)品合格率分別為、、.已知每道工序的加工都相互獨(dú)立,三道工序加工的產(chǎn)品都為合格時(shí)產(chǎn)品為一等品;有兩次合格為二等品;其它的為廢品,不進(jìn)入市場(chǎng).
(Ⅰ)正式生產(chǎn)前先試生產(chǎn)2袋食品,求這2袋食品都為廢品的概率;
(Ⅱ)設(shè)ξ為加工工序中產(chǎn)品合格的次數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了更好地開(kāi)展社團(tuán)活動(dòng),豐富同學(xué)們的課余生活,現(xiàn)用分層抽樣的方法從“模擬聯(lián)合國(guó)”,“街舞”,“動(dòng)漫”,“話劇”四個(gè)社團(tuán)中抽取若干人組成社團(tuán)指導(dǎo)小組,有關(guān)數(shù)據(jù)見(jiàn)下表:(單位:人)

(1)求的值;
(2)若從“動(dòng)漫”與“話劇”社團(tuán)已抽取的人中選2人擔(dān)任指導(dǎo)小組組長(zhǎng),求這2人分別來(lái)自這兩個(gè)社團(tuán)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案