(05年浙江卷文)(14分)
如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=PA,點(diǎn)O、D分別是AC、PC的中點(diǎn),OP⊥底面ABC.
(Ⅰ)求證:OD∥平面PAB;
(Ⅱ) 求直線OD與平面PBC所成角的大。
解析:解法一
(Ⅰ)∵O、D分別為AC、PC的中點(diǎn):∴OD∥PA,又AC平面PAB,∴OD∥平面PAB.
(Ⅱ)∵AB⊥BC,OA=OC,∴OA=OC=OB,又∵OP⊥平面ABC,∴PA=PB=PC.
取BC中點(diǎn)E,連結(jié)PE,則BC⊥平面POE,作OF⊥PE于F,連結(jié)DF,則OF⊥平面PBC
∴∠ODF是OD與平面PBC所成的角.
又OD∥PA,∴PA與平面PBC所成角的大小等于∠ODF.
在Rt△ODF中,sin∠ODF=,∴PA與平面PBC所成角為arcsin
解法二:
∵OP⊥平面ABC,OA=OC,AB=BC,∴OA⊥OB,OA⊥OP,OB⊥OP.
以O(shè)為原點(diǎn),射線OP為非負(fù)x軸,建立空間坐標(biāo)系O-xyz如圖),設(shè)AB=a,則A(a,0,0).
B(0, a,0),C(-a,0,0).設(shè)OP=h,則P(0,0,h).
(Ⅰ)∵D為PC的中點(diǎn),∴又∥,
∴OD∥平面PAB.
(Ⅱ)∵k=則PA=2a,∴h=∴可求得平面PBC的法向量
∴cos.
設(shè)PA與平面PBC所成角為θ,剛sinθ=|cos()|=.
∴PA與平面PBC所成的角為arcsin.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年西安市第一中學(xué)五模理)(12分) 已知長(zhǎng)度為的線段的兩端點(diǎn)在拋物線上移動(dòng),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年江蘇百校樣本分析)(10分)挑選空軍飛行學(xué)員可以說(shuō)是“萬(wàn)里挑一”,要想通過(guò)需過(guò)“五關(guān)”――目測(cè)、初檢、復(fù)檢、文考、政審等. 某校甲、乙、丙三個(gè)同學(xué)都順利通過(guò)了前兩關(guān),有望成為光榮的空軍飛行學(xué)員. 根據(jù)分析,甲、乙、丙三個(gè)同學(xué)能通過(guò)復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過(guò)文考關(guān)的概率分別是0.6,0.5,0.4,通過(guò)政審關(guān)的概率均為1.后三關(guān)相互獨(dú)立.
(1)求甲、乙、丙三個(gè)同學(xué)中恰有一人通過(guò)復(fù)檢的概率;
(2)設(shè)通過(guò)最后三關(guān)后,能被錄取的人數(shù)為,求隨機(jī)變量的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年周至二中三模理) 已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a2等于 ( )
(A)-4 (B)-6 (C)-8 (D)-10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年濱州市質(zhì)檢三文)(12分)已知函數(shù).
(I)當(dāng)m>0時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(II)是否存在小于零的實(shí)數(shù)m,使得對(duì)任意的,都有,若存在,求m的范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com