已知直三棱柱ABC-A1B1C1,底面△ABC是等腰三角形,∠BAC=120°,,CN=3AN,點(diǎn)M,P,Q分別是AA1,A1B1,BC的中點(diǎn).
(Ⅰ)求證:直線(xiàn)PQ∥平面BMN;
(Ⅱ)求直線(xiàn)AB與平面BMC所成角的正弦值.

【答案】分析:(Ⅰ)要證明直線(xiàn)PQ∥平面BMN,可在平面BMN中找到一條與PQ平行的直線(xiàn)即可,根據(jù)題目給出的P,Q分別是A1B1,BC的中點(diǎn),想到取AB的中點(diǎn)G,連接PG,QG后分別交BM,BN于點(diǎn)E,F(xiàn),根據(jù)題目給出的線(xiàn)段的長(zhǎng)及線(xiàn)段之間的關(guān)系證出
,從而得到EF∥PQ,然后利用線(xiàn)面平行的判定即可得證;
(Ⅱ)求直線(xiàn)AB與平面BMC所成角的正弦值,首先是找角,由題意能夠得到平面BMC⊥平面AMQ,所以直接過(guò)A作MQ的垂線(xiàn)
AO,連接BO,在直角三角形AOB中求解∠BAO的正弦值.
解答:(Ⅰ)證明:如圖,
取AB中點(diǎn)G,連結(jié)PG,QG分別交BM,BN于點(diǎn)E,F(xiàn),
則E,F(xiàn)分別為BM,BN的中點(diǎn).
,,,
且CN=3AN,所以 
所以
所以 EF∥PQ,又 EF?平面BMN,PQ?平面BMN.
所以 PQ∥平面BMN;
(Ⅱ)解:連接AQ,∵△ABC是等腰三角形,Q是BC的中點(diǎn),∴AQ⊥BC,連接MQ,
作AO⊥MQ于O,連接BO,∵M(jìn)A⊥平面ABC,∴MA⊥BC,
又AQ⊥BC,∴BC⊥平面AQM,∴BC⊥AO.
∵AO⊥MQ,∴AO⊥平面BCM,∴∠ABO就是AB與平面ABC所成在角.
在Rt△AQC中,∵∠QAC=60°,∴AQ=2.
在△RtAQM中,∵M(jìn)Q=2,由AM•AQ=MQ•AO,得
所以
點(diǎn)評(píng):本題考查了直線(xiàn)與平面平行的判定,考查了線(xiàn)面角,證明線(xiàn)面平行時(shí),常借助于三角形的中位線(xiàn)得線(xiàn)線(xiàn)平行,求線(xiàn)面角時(shí),關(guān)鍵是把找出的角能夠放在一個(gè)易于求解的三角形當(dāng)中,此題是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CC1、AB中點(diǎn).
(Ⅰ)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)判斷直線(xiàn)CF和平面AEB1的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,且D,E,F(xiàn)分別為BC,BB1,AA1的中點(diǎn).
(I) 求證:平面B1FC∥平面EAD;
(II)求證:BC1⊥平面EAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′兩兩垂直,E,F(xiàn),H分別是AC,AB,BC的中點(diǎn),
(I)證明:EF⊥AH;    
(II)求四面體E-FAH的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中點(diǎn).
(Ⅰ)求異面直線(xiàn)AB和C1D所成的角(用反三角函數(shù)表示);
(Ⅱ)若E為AB上一點(diǎn),試確定點(diǎn)E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)D到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直三棱柱ABC-A1B1C1中,AB=AC;M.N.P分別是棱BC.CC1.B1C1的中點(diǎn).A1Q=3QA, BC=
2
AA1

(Ⅰ)求證:PQ∥平面ANB1
(Ⅱ)求證:平面AMN⊥平面AMB1

查看答案和解析>>

同步練習(xí)冊(cè)答案