【題目】已知函數(shù),函數(shù).

1)當時,若對任意恒成立,求的取值范圍;

2)若函數(shù)有兩個不同的零點,求的取值范圍,并證明:.

【答案】1; 2)見解析.

【解析】

1,由已知得,問題轉化為,求,通過判斷,得出單調性,以及,求出單調區(qū)間的極值,最值,進而求出結論;

2,,時,,至多一個零點,不成立;時,求出單調區(qū)間,極值,分析函數(shù)值的變化趨勢,求得由兩個零點時,,,設,并滿足,可得,令,則,即,要證,等價轉化為證明,設,通過求導,再構造函數(shù)再求導,可證上單增,即可證明結論.

1)令,當時,.

對任意恒成立,即為

,,

上單調遞增,又,

時,,上單調遞減;

時,, 上單調遞增,

,∴.

2,,

時,,上單增,至多一個零點,不成立;

時,由,

上單減,在上單增.

時,;時,,

要存在兩零點只需,即,得.

不妨設,由,

,則,即,而

*

,

,,

上單增,,

,上單增,

,故(*)成立,得證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中,邊,,所在直線的方程分別為,.

1)求邊上的高所在的直線方程;

2)若圓過直線上一點及點,當圓面積最小時,求其標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款面向中學生的應用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動。這款軟件的激活碼為下面數(shù)學題的答案:記集合.例如:,若將集合的各個元素之和設為該軟件的激活碼,則該激活碼應為____________

定義現(xiàn)指定,將集合的元素從小到大排列組成數(shù)列,若將的各項之和設為該軟件的激活碼,則該激活碼應為_____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學圖書館舉行高中志愿者檢索圖書的比賽,從高一、高二兩個年級各抽取10名志愿者參賽。在規(guī)定時間內,他們檢索到的圖書冊數(shù)的莖葉圖如圖所示,規(guī)定冊數(shù)不小于20的為優(yōu)秀.

() 從兩個年級的參賽志愿者中各抽取兩人,求抽取的4人中至少一人優(yōu)秀的概率;

() 從高一10名志愿者中抽取一人,高二10名志愿者中抽取兩人,3人中優(yōu)秀人數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知單調等比數(shù)列中,首項為 ,其前n項和是,且成等差數(shù)列,數(shù)列滿足條件

() 求數(shù)列、的通項公式;

() ,記數(shù)列的前項和 .

①求 ;②求正整數(shù),使得對任意,均有 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓柱的底面圓的半徑,圓柱的表面積為;點在底面圓上,且直線與下底面所成的角的大小為

(1)求點到平面的距離;

(2)求二面角的大小(結果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

某學校高一數(shù)學興趣小組對學生每周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關系進行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機抽取了40名學生,記錄并整理了這些學生周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:

初二

初三

高一

高二

高三

周平均體育鍛煉小時數(shù)工(單位:小時)

14

11

13

12

9

體育成績優(yōu)秀人數(shù)y(單位:人)

35

26

32

26

19

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.

1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關于x的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過1,則認為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?

參考數(shù)據(jù):,.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調查,調查結果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學生

60

20

80

北方學生

10

10

20

合計

70

30

100

根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;

已知在被調查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:

空調類

冰箱類

小家電類

其它類

營業(yè)收入占比

凈利潤占比

則下列判斷中不正確的是( )

A. 該公司2018年度冰箱類電器營銷虧損

B. 該公司2018年度小家電類電器營業(yè)收入和凈利潤相同

C. 該公司2018年度凈利潤主要由空調類電器銷售提供

D. 剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調類電器銷售凈利潤占比將會降低

查看答案和解析>>

同步練習冊答案