任取實數(shù)a,b∈[-1,1],則a,b滿足|a-2b|≤2的概率為
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:用不等式組表示平面區(qū)域,利用幾何概型的概率公式,分別求出對應(yīng)區(qū)域的面積,即可得到結(jié)論.
解答: 解:∵a、b∈[-1,1],
∴-1≤a≤1,-1≤b≤1,對應(yīng)區(qū)域的面積為2×2=4,
不等式|a-2b|≤2對應(yīng)的區(qū)域如圖(陰影部分):
當a=-1時有a-2b=-2得b=
1
2
,
則陰影部分的面積為4-2×
1
2
×1×
1
2
=
7
2

由幾何概型的概率公式可得a、b滿足|a-2b|≤2的概率P=
7
8

故答案為:
7
8
點評:本題主要考查幾何概型的應(yīng)用,利用不等式表示平面區(qū)域,求出相應(yīng)的平面區(qū)域,求出相應(yīng)的面積是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4cos(ωx-
π
6
)sinωx-cos(2ωx+π)(ω>0),其圖象與直線y=1的相鄰兩個交點的距離為π.
(1)若g(x)=f(
3
4
x+
π
4
),求g(x)在[0,π]上的單調(diào)遞增區(qū)間;
(2)若f(α)+f(
π
2
-α)=
4+
21
2
,且α∈(
π
4
,
π
2
),試求
(5sin2α+11cos2α-8)(tanα+cotα)
2
sin(α+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=2n-an,則數(shù)列{an}的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果執(zhí)行如圖的程序框圖,那么輸出的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復(fù)數(shù)z=2-i(其中i為虛數(shù)單位),則z•
.
z
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在集合{(x,y)|
2x+y-3≤0
x+y≥0
x-y≥0
}所表示的平面區(qū)域內(nèi)任取一點M,則點M恰好取自x軸上方的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖的程序框圖,如果輸入的N是5,那么輸出p的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M,N是不等式組
x≥0
y≥0
x-y≥-1
x+y≤3
所表示的平面區(qū)域內(nèi)的兩個不同的點,則|MN|的最大值是( 。
A、3
2
B、
10
C、2
2
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m=
1
0
exdx,n=
e
1
exdx,則m,n的大小為(  )
A、m>nB、m=n
C、m<nD、不確定

查看答案和解析>>

同步練習冊答案