【題目】已知單位圓O上的兩點A,B及單位圓所在平面上的一點P,滿足 =m + (m為常數(shù)).
(1)如圖,若四邊形OABP為平行四邊形,求m的值;
(2)若m=2,求| |的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB,現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(1)若BE=3,求幾何體BEC﹣AFD的體積;
(2)求三棱錐A﹣CDF的體積的最大值,并求此時二面角A﹣CD﹣E的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知中心在原點,焦點在軸上的橢圓的一個焦點為, 是橢圓上的一個點.
(1)求橢圓的標準方程;
(2)設橢圓的上、下頂點分別為, ()是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,如果的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=a,Sn是數(shù)列{an}的前n項和,且滿足:Sn2=3n2an+Sn﹣12 , an≠0,n≥2,n∈N* .
(1)若數(shù)列{an}是等差數(shù)列,求a的值;
(2)確定a的取值集合M,使a∈M時,數(shù)列{an}是遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,記長方體ABCD﹣A1B1C1D1被平行于棱B1C1的平面EFGH截去右上部分后剩下的幾何體為Ω,則下列結論中不正確的是( )
A.EH∥FG
B.四邊形EFGH是平行四邊形
C.Ω是棱柱
D.Ω是棱臺
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ()
(Ⅰ)討論的單調(diào)性;
(Ⅱ)證明:當時,函數(shù)()有最小值.記的最小值為,求的值域;
(Ⅲ)若存在兩個不同的零點, (),求的取值范圍,并比較與0的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,M和N分別為BC、C1C的中點,那么異面直線MN與AC所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)= sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)對任意x∈R,都有f(﹣x)+f(x)=0,f(x)+f(x+ )=0,則f( )=( )
A.0
B.1
C.
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com