將一枚硬幣拋三次,設(shè)ξ為正面向上的次數(shù),則P(0<ξ<3)=(  )
A、0.1B、0.25
C、0.75D、0.5
考點(diǎn):互斥事件的概率加法公式
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是將一枚硬幣連續(xù)拋擲三次共有23=8種結(jié)果,三枚硬幣都是反面,有1種結(jié)果,三枚硬幣都是正面,有1種結(jié)果,根據(jù)對(duì)立事件的概率公式得到結(jié)果.
解答: 解:由題意知本題是一個(gè)等可能事件的概率,
試驗(yàn)發(fā)生包含的事件是將一枚硬幣連續(xù)拋擲三次共有23=8種結(jié)果,
三枚硬幣都是反面,有1種結(jié)果,三枚硬幣都是正面,有1種結(jié)果
∴P(0<ξ<3)=1-
2
8
=0.75,
故選:C.
點(diǎn)評(píng):本題考查等可能事件的概率,本題解題的關(guān)鍵是對(duì)于比較復(fù)雜的事件求概率時(shí),可以先求反面事件的概率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},對(duì)于任意n∈N*,有Sn=2n-1,則a12+a22+…+an2=( 。
A、(2n-1)2
B、
1
2
(2n-1)2
C、
1
3
(4n-1)
D、
1
2
(3n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在函數(shù)y=cos|x|、y=|tanx|、y=sin(2x+
3
)、y=cos(2x+
3
)中,最小正周期為π的函數(shù)的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)y=f(x)的圖象過(guò)點(diǎn)(2,
2
),則這個(gè)冪函數(shù)的解析式是( 。
A、y=x 
1
2
B、y=x -
1
2
C、y=x2
D、y=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=2ax2+1在橫坐標(biāo)為1的點(diǎn)M處的瞬時(shí)變化率為-4,則a的值為( 。
A、
1
2
B、-1
C、-
1
2
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,則i2014=( 。
A、-1B、-iC、1D、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)在(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在(a,b)上的導(dǎo)函數(shù)為f″(x),若在(a,b)上,f″(x)<0恒成立,則稱(chēng)函數(shù)f(x)在(a,b)上為“凸函數(shù)”.已知當(dāng)m≤2時(shí),y=f(x)=
1
6
x3-
1
2
mx2+2x+2在(-1,2)上是“凸函數(shù)”,則f(x)在(-1,2)上( 。
A、既沒(méi)有最大值,也沒(méi)有最小值
B、既有最大值,也有最小值
C、有最大值,沒(méi)有最小值
D、沒(méi)有最大值,有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:|x-1|≥2,q:x∈Z,若p∧q,?q同時(shí)為假命題,則滿(mǎn)足條件的x的集合為( 。
A、{x|x≤-1或x≥3,x∉Z}
B、{x|-1≤x≤3,x∉Z}
C、{x|x<-1或x>3,x∈Z}
D、{x|-1<x<3,x∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入數(shù)據(jù)n=5,a1=-2,a2=-2.6,a3=3.2,a4=2.5,a5=1.4,則輸出的結(jié)果為( 。
A、0.3B、0.4
C、0.5D、0.6

查看答案和解析>>

同步練習(xí)冊(cè)答案