7.如圖所示,在棱長(zhǎng)為4的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱CC1的中點(diǎn),則異面直線(xiàn)D1E與AC所成角的余弦值是$\frac{\sqrt{10}}{5}$.

分析 以D為原點(diǎn),建立空間直角坐標(biāo)系,利用向量法能求出異面直線(xiàn)D1E與AC所成角的余弦值.

解答 解:如圖,建立空間直角坐標(biāo)系,
則A(4,0,0),C(0,4,0),D1(0,0,4),E(0,4,2),
$\overrightarrow{AC}$=(-4,4,0),$\overrightarrow{{D}_{1}E}$=(0,4,-2).

cos<$\overrightarrow{AC}$,$\overrightarrow{{D}_{1}E}$>=$\frac{\overrightarrow{AC}•\overrightarrow{{D}_{1}E}}{|\overrightarrow{AC}|•|\overrightarrow{{D}_{1}E}|}$=$\frac{16}{\sqrt{32}×\sqrt{20}}$=$\frac{\sqrt{10}}{5}$.
∴異面直線(xiàn)D1E與AC所成角的余弦值為$\frac{\sqrt{10}}{5}$.
故答案為:$\frac{\sqrt{10}}{5}$.

點(diǎn)評(píng) 本題考查異面直線(xiàn)所成角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.不等式|x-1|≥5的解集是{x|x≥6或x≤-4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD=2AB=2.將梯形ABCD繞AD所在直線(xiàn)旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.一臺(tái)機(jī)器使用時(shí)間較長(zhǎng),但還可以使用.它按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器運(yùn)轉(zhuǎn)的速度而變化,如表為抽樣試驗(yàn)結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒)1614128
每小時(shí)生產(chǎn)有
缺點(diǎn)的零件數(shù)y(件)
11985
(1)用相關(guān)系數(shù)r對(duì)變量y與x進(jìn)行相關(guān)性檢驗(yàn);
(2)如果y與x有線(xiàn)性相關(guān)關(guān)系,求線(xiàn)性回歸方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?(結(jié)果保留整數(shù))
參考數(shù)據(jù):$\sum_{i=1}^{4}$xiyi=438,t=m2-1,$\sum_{i=1}^{4}$yi2=291,$\sqrt{656.25}$≈25.62.
參考公式:相關(guān)系數(shù)計(jì)算公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)函數(shù) f(x)=cos$\frac{π}{3}x$,則 f(1)+f(2)+f(3)+…+f(2016)+f(2017)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,在四面體ABCD中,AB=CD=2,AB與CD所成的角為45°,點(diǎn)E,F(xiàn),G,H分別在棱EC,BD,BC,AC上,若直線(xiàn)AB,CD都平行于平面EFGH,則四邊形EFGH面積的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}5x+3y≤15\\ y≤x+1\\ x-5y≤3.\end{array}$
(1)求目標(biāo)函數(shù)z=x+y的最大值;
(2)求目標(biāo)函數(shù)z=$\sqrt{{x^2}+{y^2}+6x-6y+18}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知:f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],且a+b≠0時(shí),有$\frac{f(a)+f(b)}{a+b}$>0恒成立.
(Ⅰ)用定義證明函數(shù)f(x)在[-1,1]上是增函數(shù);
(Ⅱ)解不等式:$f(x+\frac{1}{2})$<f(1-x);
(Ⅲ)若f(x)≤m2-2m+1對(duì)所有x∈[-1,1]恒成立,求:實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.解不等式:
(1)$\frac{x+3}{1-2x}$≥0
(2)$\frac{5}{{x_{\;}^2-10x+21}}$>1.

查看答案和解析>>

同步練習(xí)冊(cè)答案