設(shè)f(x)=x3-kx(k>0).
(1)若f′(2)=0,求f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若函數(shù)f(x)=x3-kx(k>0)在[1,+∞)上是單調(diào)函數(shù),
(Ⅰ)求證:0<k≤3;(Ⅱ)設(shè)x0≥1,f(x0)≥1,且滿足f(f(x0))=x0,求證:f(x0)=x0
分析:(1)求導(dǎo)數(shù),確定切線的斜率,求出切點(diǎn)的坐標(biāo),即可得到切線方程;
(2)(Ⅰ)f(x)在[1,+∞)上是單調(diào)函數(shù),即f'(x)≤0或f'(x)≥0在[1,+∞)上恒成立,從而解出k;
(Ⅱ)可設(shè)f(x0)=m,再由f(x)=x3-kx(k>0),證明m=x0即可.
解答:解:(1)由f(x)=x3-kx(k>0),得到f′(x)=3x2-k(k>0),
∵f′(2)=0,∴f′(2)=3×22-k=0,即k=12
則f(x)=x3-12x,f(2)=23-12×2=-16,
故f(x)在點(diǎn)(2,f(2))處的切線方程為y+16=0.
(2)證明:(Ⅰ)∵f′(x)=3x2-k(k>0)
又函數(shù)f(x)=x3-kx(k>0)在[1,+∞)上是單調(diào)函數(shù),
則①若函數(shù)f(x)=x3-kx(k>0)在[1,+∞)上是增函數(shù),則在[1,+∞)上f′(x)≥0恒成立,
即在[1,+∞)上恒有3x2≥k,故k≤3,又由k>0,∴0<k≤3;
②若函數(shù)f(x)=x3-kx(k>0)在[1,+∞)上是減函數(shù),則在[1,+∞)上f′(x)≤0恒成立,
即在[1,+∞)上恒有3x2≤k,故k不存在;
綜上,0<k≤3.
(Ⅱ)設(shè)f(x0)=m,則由f(f(x0))=x0
得到f(m)=x0,又f(x)=x3-kx(k>0)
x03-kx0=m
m3-km=x0
兩式相減得到(x03-m3)-k(x0-m)=m-x0
(x0-m)(x02+m2+x0m+1-k)=0
∵x0≥1,f(x0)≥1即m≥1,
x02+m2+x0m+1-k≥4-k,而0<k≤3,
x02+m2+x0m+1-k≥1>0,從而只有x0-m=0,即m=x0,
∴f(x0)=x0
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3+ax2+bx+c,又k是一個(gè)常數(shù),已知當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根,當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,則下列命題中錯(cuò)誤的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3+bx2+cx+d,又k是一個(gè)常數(shù),已知當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根;當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,現(xiàn)給下列命題:
(1)f(x)-4=0與f'(x)=0有一個(gè)相同的實(shí)根;
(2)f(x)=0與f'(x)=0有一個(gè)相同的實(shí)根;
(3)f(x)+3=0的任一實(shí)根大于f(x)-1=0的任一實(shí)根;
(4)f(x)+5=0的任一實(shí)根小于f(x)-2=0的任一實(shí)根.其中所有正確命題是
(1)(2)(4)
(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3+ax2+bx+c,又k是一個(gè)常數(shù),已知當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根,當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,現(xiàn)給出下列命題:
(1)f(x)-4=0和f′(x)=0有且只有一個(gè)相同的實(shí)根.
(2)f(x)=0和f′(x)=0有且只有一個(gè)相同的實(shí)根.
(3)f(x)+3=0的任一實(shí)根大于f(x)-1=0的任一實(shí)根.
(4)f(x)+5=0的任一實(shí)根小于f(x)-2=0的任一實(shí)根.
其中錯(cuò)誤命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax•2+bx+c,曲線y=f(x)在點(diǎn)x=1處的切線l不過(guò)第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線l的距離為
10
10
.若x=
2
3
時(shí),y=f(x)有極值.
(1)求a、b、c的值;
(2)設(shè)g(x)=x3+k+8lnx,若關(guān)于x的方程f(x)=g(x)在[1,e]內(nèi)有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案