【題目】選修4﹣5:不等式選講
設(shè)函數(shù)f(x)=|2x﹣4|+|x+2|
(1)求函數(shù)y=f(x)的最小值;
(2)若不等式f(x)≥|a+4|﹣|a﹣3|恒成立,求a的取值范圍.

【答案】
(1)解:由于f(x)=|2x﹣4|+|x+2|=

可得當(dāng)x<﹣2時(shí),﹣3x+2>8,當(dāng)﹣2≤x<2時(shí),4<6﹣x≤8,

當(dāng)x≥2時(shí),3x﹣2≥4,

所以函數(shù)的最小值為f(2)=4.


(2)解:若不等式f(x)≥|a+4|﹣|a﹣3|恒成立,則|a+4|﹣|a﹣3|≤f(x)min=4,

又解不等式|a+4|﹣|a﹣3|≤4可解得a≤ .所以a的取值范圍為a≤


【解析】(1)去絕對值可得f(x)= ,分段求最值可得;(2)問題等價(jià)于|a+4|﹣|a﹣3|≤f(x)min=4,解之可得.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識(shí),掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號(hào).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《幾何原本》卷2的幾何代數(shù)法(以幾何方法研究代數(shù)問題)成了后世西方數(shù)學(xué)家處理問題的重要依據(jù),通過這一原理,很多的代數(shù)的公理或定理都能夠通過圖形實(shí)現(xiàn)證明,也稱之為無字證明.現(xiàn)有如圖所示圖形,點(diǎn)F在半圓O上,點(diǎn)C在直徑AB上,且OF⊥AB,設(shè)AC=a,BC=b,則該圖形可以完成的無字證明為(
A. (a>0,b>0)
B.a2+b2≥2ab(a>0,b>0)
C. (a>0,b>0)
D. (a>0,b>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC 中,角A,B,C 所對的邊分別為a,b,c,已知bsinA= acosB.
(1)求角B 的值;
(2)若cosAsinC= ,求角A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD中點(diǎn),PA⊥底面ABCD,PA=2.

(1)證明:平面PBE⊥平面PAB;
(2)求直線PC與平面PBE所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=﹣2cosx﹣x+(x+1)ln(x+1),g(x)=k(x2+ ).其中k≠0.
(1)討論函數(shù)g(x)的單調(diào)區(qū)間;
(2)若存在x1∈(﹣1,1],對任意x2∈( ,2],使得f(x1)﹣g(x2)<k﹣6成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)在區(qū)間上的最大、最小值;

2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)計(jì)如圖所示的四個(gè)電路圖,條件p:“開關(guān)S閉合”;條件q:“燈泡L亮”,則p是q的充分不必要條件的電路圖是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x33xyf(x)上一點(diǎn)P(1,-2),過點(diǎn)P作直線l.

(1)求使直線lyf(x)相切且以P為切點(diǎn)的直線方程;

(2)求使直線lyf(x)相切且切點(diǎn)異于P的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)存在復(fù)數(shù)z同時(shí)滿足下列兩個(gè)條件:

①復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)點(diǎn)位于第二象限;

②z·+2iz=8+ai(a∈R).

求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案