分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合進行求最值即可.
解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=$\frac{1}{2}x-\frac{z}{2}$,
由圖象可知當(dāng)直線y=$\frac{1}{2}x-\frac{z}{2}$,過點A時,直線y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,此時z最小,
由$\left\{\begin{array}{l}{x+y-6=0}\\{3x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,即A(2,4).
代入目標(biāo)函數(shù)z=x-2y,
得z=2-2×4=2-8=-6.
∴目標(biāo)函數(shù)z=x-2y的最小值是-6.
故答案為:-6
點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,0) | B. | (-∞,0) | C. | (0,3) | D. | (-3,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13種 | B. | 14種 | C. | 15種 | D. | 16種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com