1.已知向量$\overrightarrow{a}$與$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且$\overrightarrow{a}$•$\overrightarrow$=-3,則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$.

分析 由條件利用兩個(gè)向量的數(shù)量積的定義求得cosθ的值,可得$\overrightarrow{a}$與$\overrightarrow$的夾角θ 的值.

解答 解:∵向量$\overrightarrow{a}$與$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且$\overrightarrow{a}$•$\overrightarrow$=-3,設(shè)$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,
則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{-3}{2×3}$=-$\frac{1}{2}$,∴θ=$\frac{2π}{3}$,
故答案為:$\frac{2π}{3}$.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)O是△ABC的內(nèi)心,AB=c,AC=b,若$\overrightarrow{AO}={λ_1}\overrightarrow{AB}+{λ_2}\overrightarrow{AC}$,則( 。
A.$\frac{λ_1}{λ_2}=\frac{c}$B.$\frac{λ_1^2}{λ_2^2}=\frac{c}$C.$\frac{λ_1}{λ_2}=\frac{c^2}{b^2}$D.$\frac{λ_1^2}{λ_2^2}=\frac{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.根據(jù)下列條件,求圓的方程:
(1)圓心在直線y=-4x上,且與直線l:x+y-1=0相切與點(diǎn)P(3,-2);
(2)已知圓和y軸相切,圓心在直線x-3y=0上,且被直線y=x解得弦長(zhǎng)為$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某次數(shù)學(xué)測(cè)驗(yàn)后,數(shù)學(xué)老師統(tǒng)計(jì)了本班學(xué)生對(duì)選做題的選做情況,得到如表數(shù)據(jù):(單位:人)
坐標(biāo)系與參數(shù)方程不等式選講合計(jì)
男同學(xué)22830
女同學(xué)81220             
合計(jì)302050
(I)請(qǐng)完成題中的2×2列聯(lián)表;并根據(jù)表中的數(shù)據(jù)判斷,是否有超過97.5%的把握認(rèn)為選做“坐標(biāo)系與參數(shù)方程”或“不等式選講”與性別有關(guān)?
(II)經(jīng)過多次測(cè)試后,甲同學(xué)發(fā)現(xiàn)自己解答一道“坐標(biāo)系與參數(shù)方程”所用的時(shí)間為區(qū)間[5,7]內(nèi)一個(gè)隨機(jī)值(單位:分鐘),解答一道“不等式選講”所用的時(shí)間為區(qū)間[6,8]內(nèi)一個(gè)隨機(jī)值(單位:分鐘),試求甲在考試中選做“坐標(biāo)系與參數(shù)方程”比選做“不等式選講”所用時(shí)間更長(zhǎng)的概率.
附表及公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“x+y=3”是“x=1且y=2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若$\frac{sinαcosα}{1-cos2α}$=1,tan(α-β)=$\frac{1}{3}$,則tanβ=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知t為實(shí)數(shù),函數(shù)f(x)=2loga(2x+t-2),g(x)=logax,其中0<a<1.
(1)若函數(shù)y=g(ax+1)-kx是偶函數(shù),求實(shí)數(shù)k的值;
(2)當(dāng)x∈[1,4]時(shí),f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍;
(3)設(shè)t=4,當(dāng)x∈[m,n]時(shí),函數(shù)y=|f(x)|的值域?yàn)閇0,2],若n-m的最小值為$\frac{1}{6}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,PB⊥AB且AD=AB=BP=$\frac{1}{2}$BC.
(1)求證:CD⊥平面PBD;
(2)已知點(diǎn)Q在PC上,若AC與BD交于點(diǎn)O,且AP∥平面BDQ,求證:OQ∥平面APD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在四棱錐P-ABCD中,底面是邊長(zhǎng)為2的菱形,∠DAB=60°,對(duì)角線AC與BD相交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成角為45°,若E是PB的中點(diǎn),則異面直線DE與PA所成角的余弦值為( 。
A.$\frac{{3\sqrt{10}}}{20}$B.$\frac{{\sqrt{10}}}{20}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案