【題目】若不等式(1﹣a)x2﹣4x+6>0的解集是{x|﹣3<x<1}.
(1)解不等式2x2+(2﹣a)x﹣a>0
(2)b為何值時(shí),ax2+bx+3≥0的解集為R.

【答案】
(1)解:由題意知,1﹣a<0,且﹣3和1是方程(1﹣a)x2﹣4x+6=0的兩根,

,解得a=3.

∴不等式2x2+(2﹣a)x﹣a>0即為2x2﹣x﹣3>0,解得x<﹣1或x>

∴所求不等式的解集為{x|x<﹣1或x> }


(2)解:ax2+bx+3≥0即為3x2+bx+3≥0,

若此不等式的解集為R,則b2﹣4×3×3≤0,∴﹣6≤b≤6


【解析】(1)由不等式(1﹣a)x2﹣4x+6>0的解集是{x|﹣3<x<1},利用根與系數(shù)關(guān)系列式求出a的值,把a(bǔ)代入不等式2x2+(2﹣a)x﹣a>0后直接利用因式分解法求解;(2)代入a得值后,由不等式對(duì)應(yīng)的方程的判別式小于等于0列式求解b的取值范圍.
【考點(diǎn)精析】掌握解一元二次不等式是解答本題的根本,需要知道求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接黨的“十九”大的召開,某校組織了“歌頌祖國(guó),緊跟黨走”黨史知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出50名學(xué)生,將其成績(jī)(滿分100分,成績(jī)均為整數(shù))分成六段 , 后繪制頻率分布直方圖(如下圖所示)

(Ⅰ)求頻率分布圖中的值;

(Ⅱ)估計(jì)參加考試的學(xué)生得分不低于80的概率;

(Ⅲ)從這50名學(xué)生中,隨機(jī)抽取得分在的學(xué)生2人,求此2人得分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記f(x)=|log2(ax)|在x∈[ ,8]時(shí)的最大值為g(a),則g(a)的最小值為(
A.
B.2
C.
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,證明;

(2)若,求的取值范圍;并證明此時(shí)的極值存在且與無(wú)關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知底角為45°的等腰梯形ABCD,底邊BC長(zhǎng)為12,腰長(zhǎng)為4 ,當(dāng)一條垂直于底邊BC(垂足為F)的直線l從左至右移動(dòng)(與梯形ABCD有公共點(diǎn))時(shí),直線l把梯形分成兩部分.

(1)令BF=x(0<x<12),試寫出直線右邊部分的面積y與x的函數(shù)解析式;
(2)在(1)的條件下,令y=f(x).構(gòu)造函數(shù)g(x)=
①判斷函數(shù)g(x)在(4,8)上的單調(diào)性;
②判斷函數(shù)g(x)在定義域內(nèi)是否具有單調(diào)性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)已知函數(shù)

)求函數(shù)的單調(diào)區(qū)間;

)若存在兩條直線都是曲線的切線,求實(shí)數(shù)的取值范圍;

)若,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,按其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組后得到如右部分頻率分布直方圖,觀察圖中的信息,

回答下列問題:

(1)補(bǔ)全頻率分布直方圖;并估計(jì)本次考試的數(shù)學(xué)平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績(jī)中抽取一個(gè)容量為6的樣本,再?gòu)倪@6個(gè)樣本中任取2人成績(jī),求至多有1人成績(jī)?cè)诜謹(jǐn)?shù)段內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x/攝氏度

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;

(Ⅱ)若選取的是12月1日與12月5日的2組數(shù)據(jù),請(qǐng)根據(jù)12月2日至4日的數(shù)據(jù),求出關(guān)于的線性回歸方程,由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

附:參考格式:

查看答案和解析>>

同步練習(xí)冊(cè)答案