18.設A={x|3x+6=0},則A=( 。
A.-2B.{2}C.{-2}D.2∈A

分析 根據(jù)題意,集合A為3x+6=0的解集,解3x+6=0可得x=-2,將其表示為集合的形式可得答案.

解答 解:根據(jù)題意,A={x|3x+6=0},集合A為3x+6=0的解集,
若3x+6=0,則x=-2,
故A={-2};
故選:C.

點評 本題考查集合的表示法,注意集合的意義以及最后答案為集合的形式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明f(x)在(-∞,+∞)上是增函數(shù),并求出f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)f(x)=$\left\{\begin{array}{l}x+8,x∈[-1,1]\\ 2x+6,x∈(1,2]\end{array}\right.$,則f(x)的最大值、最小值分別為( 。
A.10,7B.10,8C.8,6D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=x2+3x+2在區(qū)間(-5,5)上的最大值、最小值分別是(  )
A.42,12B.42,-$\frac{1}{4}$
C.12,-$\frac{1}{4}$D.無最大值,有最小值是-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.寫出下列集合中的元素:
(1){小于12的質(zhì)數(shù)};
(2){倒數(shù)等于其本身的數(shù)};
(3){平方數(shù)等于其本身的數(shù)}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.三角形的面積為S平方分米,底邊長為1.8分米,底邊上的高為H分米,則H和S的函數(shù)關系式是( 。
A.S=0.9H(H≥0)B.S=0.9H(H>0)C.H=$\frac{S}{0.9}$(S≥0)D.H=$\frac{S}{0.9}$(S>0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知方程$\frac{{x}^{2}}{1+k}$+$\frac{{y}^{2}}{1-k}$=1(k<-1)表示雙曲線,則雙曲線的焦點坐標是(  )
A.(0,$±\sqrt{k}$)B.(0,$±\sqrt{2k}$)C.(0,$±\sqrt{-k}$)D.(0,$±\sqrt{-2k}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知M是焦點為F1(-1,0),F(xiàn)2(1,0)橢圓上任-點.且三角形F1MF2的面積的最大值$\sqrt{3}$.
(1)求橢圓C的標準方程;
(2)一直線l過F2且與橢圓C交于A、B兩點,交y軸于點P,證明:$\frac{|PB|}{|B{F}_{2}|}$-$\frac{|PA|}{|A{F}_{2}|}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.(${x}^{\frac{1}{2}}$一2${y}^{\frac{1}{2}}$)(${x}^{\frac{1}{2}}$+2${y}^{\frac{1}{2}}$)(x+4y)等于x2-16y2

查看答案和解析>>

同步練習冊答案