已知命題p:任意x∈R,x2+1≥a都成立,命題q:方程表示雙曲線(xiàn).
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若 “p且q”為真命題,求實(shí)數(shù)a的取值范圍.
(1)
(2)
解析試題分析:解:(1)根據(jù)題意,由于命題p:任意x∈R,x2+1≥a都成立,則可知a小于等于x2+1的最小值即可,而命題q:方程表示雙曲線(xiàn)a+2>0,a>-2,故可知
命題p為真命題,則 4分
(2)命題q為真命題,則所以“p且q”為真命題,則說(shuō)明同時(shí)成立,利用交集的運(yùn)算可知,。 8分
考點(diǎn):命題的真假
點(diǎn)評(píng):主要是考查了命題的真假的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,設(shè):函數(shù)在上單調(diào)遞減;:函數(shù)在上為增函數(shù).
(1)若為真,為假,求實(shí)數(shù)的取值范圍;
(2)若“且”為假,“或”為真,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)命題:函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c7/6/dtkje.png" style="vertical-align:middle;" />;命題對(duì)一切的實(shí)數(shù)恒成立,如果命題“且”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
命題p:實(shí)數(shù)滿(mǎn)足(其中),命題q:實(shí)數(shù)滿(mǎn)足
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)命題P:函數(shù)在區(qū)間[-1,1]上單調(diào)遞減;
命題q:函數(shù)的值域是R.如果命題p或q為真命題,p且q為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若是的充分而不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知命題:方程有兩個(gè)不相等的實(shí)數(shù)根;命題:函數(shù)是上的單調(diào)增函數(shù).若“或”是真命題,“且”是假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)設(shè)是實(shí)數(shù),對(duì)函數(shù)和拋物線(xiàn):,有如下兩個(gè)命題:函數(shù)的最小值小于0;拋物線(xiàn)上的點(diǎn)到其準(zhǔn)線(xiàn)的距離.
已知“”和“”都為假命題,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com