已知定義域為R的函數(shù)f(x)=是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)解關(guān)于t的不等式f(t2﹣2t)+f(2t2﹣1)<0.
解:(Ⅰ)因為f(x)是奇函數(shù),所以f(0)=0=0,解得b=1,
f(x)=又由f(1)=﹣f(﹣1),
解得a=2.
(Ⅱ)由(Ⅰ)知f(x)==﹣+
由上式知f(x)在(﹣∞,+∞)上為減函數(shù)
又因f(x)是奇函數(shù),
從而不等式f(t2﹣2t)+f(2t2﹣1)<0等價于f(t2﹣2t)<﹣f(2t2﹣1)=f(﹣2t2+1).
因f(x)是減函數(shù),由上式推得t2﹣2t>﹣2t2+1,
即3t2﹣2t﹣1>0解不等式可得t>1或t<﹣
故不等式的解集為:{ t|t>1或t<﹣}.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•石家莊二模)已知定義域為R的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(4-x)=-f(x),當(dāng)x<2時,f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習(xí)冊答案