已知函數(shù)在區(qū)間上的最大值與最小值分別為,則___________.
32

試題分析:解:∵函數(shù)f(x)=x3-12x+8,∴f′(x)=3x2-12,令f′(x)>0,解得x>2或x<-2;令f′(x)<0,解得-2<x<2,故函數(shù)在[-2,2]上是減函數(shù),在[-3,-2],[2,3]上是增函數(shù),所以函數(shù)在x=2時取到最小值f(2)=8-24+8=-8,在x=-2時取到最大值f(-2)=-8+24+8=24,即M=24,m=-8,∴M-m=32,故填寫32.
點(diǎn)評:本題重點(diǎn)考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的最值、單調(diào)性,解答本題關(guān)鍵是研究出函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性確定出函數(shù)的最值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(Ⅰ)求的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)上只有一個零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在R上可導(dǎo),且,則的大小關(guān)系是(     )
A.B.
C.D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

題文已知函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)處取極值,則            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(I)若曲線與曲線在它們的交點(diǎn)處具有公共切線,求的值;
(II)當(dāng)時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點(diǎn),求的取值范圍;
(III)當(dāng)時,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),為自然對數(shù)的底數(shù)).
(1)求函數(shù)的最小值;
(2)若≥0對任意的恒成立,求實(shí)數(shù)的值;
(3)在(2)的條件下,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分12分)設(shè)M是由滿足下列條件的函數(shù)f (x)構(gòu)成的集合:①方程f (x)一x=0有實(shí)根;②函數(shù)的導(dǎo)數(shù)滿足0<<1.
(1)若函數(shù)f(x)為集合M中的任意一個元素,證明:方程f(x)一x=0只有一個實(shí)根;
(2)判斷函數(shù)是否是集合M中的元素,并說明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個元素,對于定義域中任意
證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點(diǎn),求f(x)在x∈[1,a]上的最小值和最大值.

查看答案和解析>>

同步練習(xí)冊答案