把邊長(zhǎng)為6的正三角形ABC沿高AD折成60°的二面角,則點(diǎn)A到BC的距離是( 。
A、6
B、3
6
C、2
3
D、
3
2
15
分析:先作出點(diǎn)A到BC的距離,證明其是點(diǎn)A到BC的距離,再根據(jù)圖形的特征求出此長(zhǎng)度即可,具體作法請(qǐng)看圖
解答:精英家教網(wǎng)解:如圖,由題意知∠BDC即為二面角的平面角,大小為60°,由邊長(zhǎng)為6的正三角形ABC,D是中點(diǎn),故△BDC為正三角形,
由題意知,AD⊥底面BDC,過(guò)D作DE垂直于BC于E,由上證明知,E是BC的中點(diǎn),連接AE,
由AD⊥底面BDC,知AD⊥BC,由作圖知DE⊥BC,又AD∩DE=D
故BC⊥面ADE,故BC⊥AE,即AE即為點(diǎn)A到BC的距離
由題意邊長(zhǎng)為6的正三角形ABC,故AD=3
3
,
在正三角形BDC中,邊長(zhǎng)為3,所以BC邊上的高DE=
3
3
2

在直角三角形ADE中,可得AE=
(3
3
)
2
+(
3
3
2
)
2
=
3
2
15

故選D
點(diǎn)評(píng):本題考點(diǎn)是與二面有有關(guān)系的幾何綜合題,根據(jù)題設(shè)條件求點(diǎn)到線的距離,解答本題要先作線,證明其是點(diǎn)到線的距離,再求值,本題中有一個(gè)過(guò)程易遺漏出錯(cuò),即第二步的證明過(guò)程,作題時(shí)一定要注意,只要經(jīng)過(guò)證明的結(jié)論才是正確的結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省普通高中學(xué)業(yè)水平考試數(shù)學(xué)模擬試卷(一)(解析版) 題型:選擇題

把邊長(zhǎng)為6的正三角形ABC沿高AD折成60°的二面角,則點(diǎn)A到BC的距離是( )
A.6
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案