4.若函數(shù)f(x)滿足:集合A={f(n)|n∈N*}中至少存在三個不同的數(shù)構成等差數(shù)列,則稱函數(shù)f(x)是等差源函數(shù).判斷下列函數(shù):
①y=log2x;
②y=2x;
③y=$\frac{1}{x}$中,
所有的等差源函數(shù)的序號是( 。
A.B.①②C.②③D.①③

分析 利用等差源函數(shù)的定義、等差數(shù)列的定義即可判斷出結論.

解答 解:①∵log21,log22,log24構成等差數(shù)列,∴y=log2x是等差源函數(shù);
②y=2x不是等差源函數(shù),因為若是,則2×2p=2m+2n,則2p+1=2m+2n,
∴2p+1-n=2m-n+1,左邊是偶數(shù),右邊是奇數(shù),故y=2x+1不是等差源函數(shù);
③取$\frac{1}{2},\frac{1}{3},\frac{1}{6}$成等差數(shù)列,因此y=$\frac{1}{x}$是等差源函數(shù).
綜上可得:只有①③正確.
故選:D.

點評 本題考查了等差源函數(shù)的定義、等差數(shù)列的定義,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖所示,拋物線C:y2=2px(p>0)的焦點為F,經(jīng)過點F的直線l與拋物線交于P,Q兩點,弦PQ的中點為N,經(jīng)過點N作y軸的垂線與C的準線交于點T.
(Ⅰ)若直線l的斜率為1,且|PQ|=4,求拋物線C的標準方程;
(Ⅱ)證明:無論p為何值,以線段TN為直徑的圓總經(jīng)過點F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某商場舉行促銷活動,有兩個摸獎箱,A箱內(nèi)有一個“1”號球、兩個“2”號球、三個“3”號球、四個無號球,B箱內(nèi)有五個“1”號球、五個“2”號球,每次摸獎后放回.消費額滿100元有一次A箱內(nèi)摸獎機會,消費額滿300元有一次B箱內(nèi)摸獎機會,摸得有數(shù)字的球則中獎,“1”號球獎50元、“2”號球獎20元、“3”號球獎5元,摸得無號球則沒有獎金.
(Ⅰ)經(jīng)統(tǒng)計,消費額X服從正態(tài)分布N(150,625),某天有1000位顧客,請估計消費額X
(單位:元)在區(qū)間(100,150]內(nèi)并中獎的人數(shù);
附:若$X\~N(μ,\;{σ^2})$,則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
(Ⅱ)某三位顧客各有一次A箱內(nèi)摸獎機會,求其中中獎人數(shù)ξ的分布列;
(Ⅲ)某顧客消費額為308元,有兩種摸獎方法,方法一:三次A箱內(nèi)摸獎機會;方法二:一次B箱內(nèi)摸獎機會.請問:這位顧客選哪一種方法所得獎金的期望值較大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦距為$2\sqrt{2}$,F(xiàn)1,F(xiàn)2為其左右焦點,M為橢圓上一點,且∠F1MF2=60°,${S_{△{F_1}M{F_2}}}=\frac{{2\sqrt{3}}}{3}$
(1)求橢圓C的方程;
(2)設直線l:y=kx+m與橢圓C相交于A、B兩點,以線段OA,OB為鄰邊作平行四邊形OAPB,其中頂點P在橢圓C上,O為坐標原點,求證:平行四邊形OAPB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列四個函數(shù)中,在其定義域上既是奇函數(shù)又是單調(diào)遞增函數(shù)的是( 。
A.y=exB.y=sinxC.$y=\sqrt{x}$D.y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設函數(shù)$f(x)=\left\{\begin{array}{l}-(x+3)(x-1),x≤a\\{2^x}-2\;\;\;\;\;\;\;\;\;\;\;\;,x>a.\end{array}\right.$
①若a=1,則f(x)的零點個數(shù)為2;
②若f(x)恰有1個零點,則實數(shù)a的取值范圍是(-∞,-3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知直線3x+(1-a)y+1=0與直線x-y+2=0平行,則a的值為( 。
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.$y={(\frac{1}{2})^x}$B.y=-x2C.y=log2xD.y=|x|+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.某四棱錐的三視圖如圖所示,該四棱錐的四個側面的面積中最大的是( 。
A.3B.$2\sqrt{5}$C.6D.$3\sqrt{5}$

查看答案和解析>>

同步練習冊答案