如圖,三棱柱ABC-A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(I)求證:平面AA1B1B⊥平面BB1C1C;
(II)若AB=2,求三棱柱ABC-A1B1C1體積.
分析:(I)證AB垂直于平面內(nèi)的兩條相交直線,再由線面垂直⇒面面垂直;
(II)先求得三棱錐B1-ABC的體積,再利用棱柱是由三個(gè)體積相等的三棱錐組合而成來(lái)求解.
解答:解:(Ⅰ)證明:由側(cè)面AA1B1B為正方形,知AB⊥BB1
又∵AB⊥B1C,BB1∩B1C=B1,∴AB⊥平面BB1C1C,
又∵AB?平面AA1B1B,∴平面AA1B1B⊥BB1C1C.
(Ⅱ)由題意,CB=CB1,設(shè)O是BB1的中點(diǎn),連接CO,則CO⊥BB1
由(Ⅰ)知,CO⊥平面AB1B1A,且CO=
3
2
BC=
3
2
AB=
3

連接AB1,則VC-ABB1=
1
3
S△ABB1•CO=
1
6
×AB2•CO=
2
3
3

VB1-ABC=VC-AA1B1=VC-A1B1C1=
1
3
VABC-A1B1C1=
2
3
3

∴V三棱柱=2
3
點(diǎn)評(píng):本題考查面面垂直的判定及空間幾何體的體積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,則直線A1C1和平面ACB1的距離等于
 
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),AB=AC.
(1)證明:DE⊥平面BCC1
(2)設(shè)B1C與平面BCD所成的角的大小為30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中點(diǎn).
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1的底面ABC為正三角形,側(cè)棱AA1⊥平面ABC,D是BC中點(diǎn),且AA1=AB
(1)證明:AD⊥BC1
(2)證明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•大連二模)如圖,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC′B′,E、F分別為棱AB、CC′的中點(diǎn).
(I)求證:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF與平面ACC'A'所成的角的余弦為
7
3
,求二面角C-AA'-B的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案