精英家教網 > 高中數學 > 題目詳情
給出下列五個命題:
①函數y=f(x),x∈R的圖象與直線x=a可能有兩個不同的交點;
②函數y=log2x2與函數y=2log2x是相等函數;
③對于指數函數y=2x與冪函數y=x2,總存在x0,當x>x0 時,有2x>x2成立;
④對于函數y=f(x),x∈[a,b],若有f(a)•f(b)<0,則f(x)在(a,b)內有零點.
⑤已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,則x1+x2=5.
其中正確的序號是
③⑤
③⑤
分析:①函數表示每個輸入值對應唯一輸出值的一種對應關系,根據定義進行判定即可判斷;②根據函數的定義域進行判定即可;③總存在x0=4,當x>4 時,有2x>x2成立;④缺少條件“函數y=f(x)在區(qū)間[a,b]上連續(xù)”;⑤第一個方程:lgx=5-x.第二個方程,10x=5-x,lg(5-x)=x.注意第二個方程,如果做變量代換y=5-x,則lgy=5-y,其實是與第一個方程一樣的.那么,如果x1,x2是兩個方程的解,則必有x1=5-x2,也就是說,x1+x2=5.
解答:解:對于①函數表示每個輸入值對應唯一輸出值的一種對應關系,根據定義進行判定即可判斷①錯;
對于②函數y=log2x2與函數y=2log2x的定義域不等,故不是相等函數,故②錯;
對于③當x0取大于等于4的值都可使當x>x0 時,有2x>x2成立,故③正確;
對于④函數y=f(x)在區(qū)間[a,b]上連續(xù),才有若有f(a)•f(b)<0,則f(x)在(a,b)內有零點.故④錯
對于⑤:∵x+lgx=5,∴l(xiāng)gx=5-x.∵x+10x=5,∴10x=5-x,
∴l(xiāng)g(5-x)=x.如果做變量代換y=5-x,則lgy=5-y,
∵x1是方程x+lgx=5的根,x2是方程x+10x=5的根,
∴x1=5-x2,∴x1+x2=5.故正確
故答案為:③⑤
點評:此題是個中檔題,考查函數圖象和零點問題,以及函數概念和構成要素等基礎知識,考查學生靈活應用知識分析解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列五個命題:
①在三角形ABC中,若A>B則sinA>sinB;
②若數列{bn}的前n項和Sn=n2+2n+1.則數列{bn}從第二項起成等差數列;
③已知Sn是等差數列{an}的前n項和,若S7>S8則S9>S8;
④已知等差數列{an}的前n項和為Sn,若a5=5a3
S9S5
=9;
⑤若{an}是等比數列,且Sn=3n+1+r,則r=-1;
其中正確命題的序號為:
①②④
①②④

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列五個命題:
①若4a=3,log45=b,則log4
95
=a2-b
;
②函數f(x)=0.51+2x-x2的單調遞減區(qū)間是[1,+∞);
③m≥-1,則函數y=lg(x2-2x-m)的值域為R;
④若映射f:A→B為單調函數,則對于任意b∈B,它至多有一個原象;
⑤函數y=ex的圖象與函數y=f(x)的圖象關于直線y=x對稱,則f(e3)=3.
其中正確的命題是
③④⑤
③④⑤
(把你認為正確的命題序號都填在橫線上)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列五個命題:其中正確的命題有
②③⑤
②③⑤
(填序號).
①若
a
b
=0,則一定有
a
b
;  ②?x,y∈R,sin(x-y)=sinx-siny;
③?a∈(0,1)∪(1,+∞),函數f(x)=a1-2x+1都恒過定點(
1
2
,2)
;
④方程x2+y2+Dx+Ey+F=0表示圓的充要條件是D2+E2-4F≥0;
⑤若存在有序實數對(x,y),使得
OP
=x
OA
+y
OB
,則O,P,A,B四點共面.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•上海模擬)已知f(x)在x∈[a,b]上的最大值為M,最小值為m,給出下列五個命題:
①若對任何x∈[a,b]都有p≤f(x),則p的取值范圍是(-∞,m];
②若對任何x∈[a,b]都有p≤f(x),則p的取值范圍是(-∞,M];
③若關于x的方程p=f(x)在區(qū)間[a,b]上有解,則p的取值范圍是[m,M];
④若關于x的不等式p≤f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,m];
⑤若關于x的不等式p≤f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,M];
其中正確命題的個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列五個命題:其中正確的命題有
②③④
②③④
(填序號).
①函數y=sinx(x∈[-π,π])的圖象與x軸圍成的圖形的面積S=
π
sinxdx

C
r+1
n+1
=
C
r+1
n
+
C
r
n
;
③在(a+b)n的展開式中,奇數項的二項式系數之和等于偶數項的二項式系數之和;
④i+i2+i3+…i2012=0;
⑤用數學歸納法證明不等式
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
,(n≥2,n∈N*)
的過程中,由假設n=k成立推到n=k+1成立時,只需證明
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2(k+1)
13
24
即可.

查看答案和解析>>

同步練習冊答案