【題目】在數(shù)列中,,,數(shù)列的前項(xiàng)和滿足,.

1)求,,的值,猜測的通項(xiàng)公式,并證明之.

2)求數(shù)列的通項(xiàng)公式;

3)設(shè).證明:.

【答案】1,,;猜測:,證明見解析(2;3)證明見解析

【解析】

1)帶值計(jì)算并作猜想,利用迭乘法或數(shù)學(xué)歸納法,可得結(jié)果.

2)根據(jù)(1)的條件,利用的關(guān)系,可得,根據(jù)的關(guān)系,可得結(jié)果.

3)根據(jù)(2)的結(jié)論,計(jì)算出,進(jìn)一步得出,與2比較,可得結(jié)果.

1)由題知:

,,,

猜測:

【法一】

,

【法二】

用數(shù)學(xué)歸納法證明如下:

當(dāng)時(shí),,等式成立.

假設(shè)時(shí)等式成立,

,

當(dāng)時(shí),

2

由(1)知:,

當(dāng)時(shí),也成立,

3

證明:當(dāng),時(shí),

.

注意到

,

.

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng),時(shí),

,.

從而時(shí),

綜上,當(dāng)時(shí)有,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):

溫差

8

10

11

12

13

發(fā)芽數(shù)(顆)

79

81

85

86

90

(1)請根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;

(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場種植小麥所獲得的收益.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著電子商務(wù)的發(fā)展, 人們的購物習(xí)慣正在改變, 基本上所有的需求都可以通過網(wǎng)絡(luò)購物解決. 小韓是位網(wǎng)購達(dá)人, 每次購買商品成功后都會(huì)對(duì)電商的商品和服務(wù)進(jìn)行評(píng)價(jià). 現(xiàn)對(duì)其近年的200次成功交易進(jìn)行評(píng)價(jià)統(tǒng)計(jì), 統(tǒng)計(jì)結(jié)果如下表所示.

對(duì)服務(wù)好評(píng)

對(duì)服務(wù)不滿意

合計(jì)

對(duì)商品好評(píng)

80

40

120

對(duì)商品不滿意

70

10

80

合計(jì)

150

50

200

(1) 是否有的把握認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)? 請說明理由;

(2) 若針對(duì)商品的好評(píng)率, 采用分層抽樣的方式從這200次交易中取出5次交易, 并從中選擇兩次交易進(jìn)行觀察, 求只有一次好評(píng)的概率.

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在P地正西方向8kmA處和正東方向1kmB處各有一條正北方向的公路ACBD,現(xiàn)計(jì)劃在ACBD路邊各修建一個(gè)物流中心EF,為緩解交通壓力,決定修建兩條互相垂直的公路PEPF,設(shè)

為減少對(duì)周邊區(qū)域的影響,試確定E,F的位置,使的面積之和最;

為節(jié)省建設(shè)成本,求使的值最小時(shí)AEBF的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱各條棱的長度均相等,的中點(diǎn),分別是線段和線段的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是

A. 內(nèi)總存在與平面平行的線段

B. 平面平面

C. 三棱錐的體積為定值

D. 可能為直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求的直角坐標(biāo)方程;

(Ⅱ)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形ABC腰長為3,底邊BC長為4,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為2,此時(shí)四面體ABCD外接球表面積為____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查一款電視機(jī)的使用時(shí)間,研究人員對(duì)該款電視機(jī)進(jìn)行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:

并對(duì)不同年齡層的市民對(duì)這款電視機(jī)的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款電視機(jī)的平均使用時(shí)間;

(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購買該款電視機(jī)”與“市民的年齡”有關(guān);

(3)若按照電視機(jī)的使用時(shí)間進(jìn)行分層抽樣,從使用時(shí)間在[0,4)和[4,20]的電視機(jī)中抽取5臺(tái),再從這5臺(tái)中隨機(jī)抽取2臺(tái)進(jìn)行配件檢測,求被抽取的2臺(tái)電視機(jī)的使用時(shí)間都在[4,20]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a是實(shí)常數(shù),函數(shù)

1)若曲線處的切線過點(diǎn)A0,﹣2),求實(shí)數(shù)a的值;

2)若有兩個(gè)極值點(diǎn)),

求證:;

求證:

查看答案和解析>>

同步練習(xí)冊答案