【題目】某保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):
已知三類工種職工每人每年保費(fèi)分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.
(1)求保險公司在該業(yè)務(wù)所或利潤的期望值;
(2)現(xiàn)有如下兩個方案供企業(yè)選擇:
方案1:企業(yè)不與保險公司合作,職工不交保險,出意外企業(yè)自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項(xiàng)工作的固定支出為每年12萬元;
方案2:企業(yè)與保險公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個人負(fù)責(zé)保費(fèi)的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項(xiàng)開支.
請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.
【答案】(Ⅰ)詳見解析;(Ⅱ) 方案2.
【解析】試題分析:(Ⅰ)設(shè)工種職工的每份保單保險公司的收益為隨機(jī)變量,可得其分布列,分別求解數(shù)學(xué)期望,即可得到該工資的期望值;
(Ⅱ)分別求出方案1和方案2中企業(yè)每年安全支出與固定開支,即可作出比較得到結(jié)論.
試題解析:
(Ⅰ)設(shè)工種A、B、C職工的每份保單保險公司的收益為隨機(jī)變量X、Y、Z,則X、Y、Z的分布列為
X | 25 | ||
P | |||
Y | 25 | ||
P | |||
Z | 40 | ||
P |
保險公司的期望收益為
;
;
;
保險公司的利潤的期望值為,
保險公司在該業(yè)務(wù)所獲利潤的期望值為9萬元.
(Ⅱ)方案1:企業(yè)不與保險公司合作,則企業(yè)每年安全支出與固定開支共為:
,
方案2:企業(yè)與保險公司合作,則企業(yè)支出保險金額為:
,
,故建議企業(yè)選擇方案2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于莖葉圖的說法,結(jié)論錯誤的一個是( )
A. 甲的極差是29 B. 甲的中位數(shù)是25
C. 乙的眾數(shù)是21 D. 甲的平均數(shù)比乙的大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長均相等的四棱錐中, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )
A.∥平面B.平面∥平面
C.直線與直線所成角的大小為D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-ln(x+m).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時,證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,,,,,E為AB的中點(diǎn).將沿CE折起,使點(diǎn)B到達(dá)點(diǎn)F的位置,且平面CEF與平面ADCE所成的二面角為.
(1)求證:平面平面AEF;
(2)求直線DF與平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( )
A. 2017年第一季度GDP增速由高到低排位第5的是浙江省.
B. 與去年同期相比,2017年第一季度的GDP總量實(shí)現(xiàn)了增長.
C. 去年同期河南省的GDP總量不超過4000億元 .
D. 2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結(jié)論錯誤的是( 。
A. 回答該問卷的總?cè)藬?shù)不可能是100個
B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會宣傳”的人數(shù)最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐中,O為頂點(diǎn)S在底面ABCD內(nèi)的投影,P為側(cè)棱SD的中點(diǎn),且.
(1)證明:平面PAC.
(2)求直線BC與平面PAC的所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級開設(shè)了豐富多彩的校本課程,現(xiàn)從甲、乙兩個班隨機(jī)抽取了5名學(xué)生校本課程的學(xué)分,統(tǒng)計如下表.
甲 | 8 | 11 | 14 | 15 | 22 |
乙 | 6 | 7 | 10 | 23 | 24 |
用分別表示甲、乙兩班抽取的5名學(xué)生學(xué)分的方差,計算兩個班學(xué)分的方差.得______,并由此可判斷成績更穩(wěn)定的班級是______班.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com