已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),則過兩點Q1(a1,b1)、Q2(a2,b2)的直線方程是

[  ]

A.3x+2y=0

B.2x-3y+5=0

C.2x+3y+1=0

D.3x+2y+1=0

答案:C
解析:

因為交點為P(2,3),所以P(2,3)同時在已知的兩條直線上,則由此Q1(a1,b1)、Q2(a2,b2)都滿足方程2x+3y+1=0,所以過這兩點的直線方程是2x+3y+1=0.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:設(shè)計必修二數(shù)學蘇教版 蘇教版 題型:013

已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點是P(2,3),則過兩點Q1(a1,b1)、Q2(a2,b2)的直線方程是

[  ]

A.3x-2y=0

B.2x-3y+5=0

C.2x+3y+1=0

D.3x+2y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源:設(shè)計必修二數(shù)學北師版 北師版 題型:044

已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點A(a1,b1)、B(a2,b2)的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:設(shè)計必修二數(shù)學人教A版 人教A版 題型:044

已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點A(a1,b1)、B(a2,b2)的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點A(a1,b1)、B(a2,b2)的直線方程.

查看答案和解析>>

同步練習冊答案