設(shè)M(x,y,z)為空間直角坐標(biāo)系內(nèi)一點(diǎn),點(diǎn)M在xOy平面上的射影P的極坐標(biāo)為(ρ,θ)(極坐標(biāo)系以O(shè)為極點(diǎn),以x軸為極軸),則我們稱三元數(shù)組(ρ,θ,z)為點(diǎn)M的柱面坐標(biāo).已知M點(diǎn)的柱面坐標(biāo)為數(shù)學(xué)公式,則直線OM與xOz平面所成的角為________.


分析:根據(jù)題意:“M點(diǎn)的柱面坐標(biāo)為,”作出立體圖形,如圖所示.利用長方體模型進(jìn)行計(jì)算即可.在長方體OM中,∠PON=,ON=6,MN=1,直線OM與xOz平面所成的角為∠MOQ,利用長方體的性質(zhì)得到對角線的長,再在直角三角形MOQ中,求出sin∠MOQ,從而得出則直線OM與xOz平面所成的角的大。
解答:解:根據(jù)題意作出立體圖形,如圖所示.
在長方體OM中,∠PON=,ON=6,MN=1,直線OM與xOz平面所成的角為∠MOQ,
在直角三角形OPN中,OP=ONcos=3,PN=ONsin=3,
∴OM===
在直角三角形MOQ中,sin∠MOQ===
∴則直線OM與xOz平面所成的角∠MOQ為
故答案為:
點(diǎn)評:本題考查直線與平面所成的角和線面角,本題解題的關(guān)鍵是構(gòu)造長方體,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)附加題:
A.如圖,四邊形ABCD內(nèi)接于圓O,弧AB=弧AD,過A點(diǎn)的切線交CB的延長線于E點(diǎn).
求證:AB2=BE•CD.
B.設(shè)數(shù)列{an},{bn}滿足an+1=3an+2bn,bn+1=2bn,且滿足
an+4
bn+4
=M
an
bn
,試求二階矩陣M.
C.已知橢圓C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
D.已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)設(shè)M(x,y,z)為空間直角坐標(biāo)系內(nèi)一點(diǎn),點(diǎn)M在xOy平面上的射影P的極坐標(biāo)為(ρ,θ)(極坐標(biāo)系以O(shè)為極點(diǎn),以x軸為極軸),則我們稱三元數(shù)組(ρ,θ,z)為點(diǎn)M的柱面坐標(biāo).已知M點(diǎn)的柱面坐標(biāo)為(6,
π
3
,-1)
,則直線OM與xOz平面所成的角為
arcsin
3
101
37
arcsin
3
101
37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省泰州高級中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

附加題:
A.如圖,四邊形ABCD內(nèi)接于圓O,弧AB=弧AD,過A點(diǎn)的切線交CB的延長線于E點(diǎn).
求證:AB2=BE•CD.
B.設(shè)數(shù)列{an},{bn}滿足an+1=3an+2bn,bn+1=2bn,且滿足=M,試求二階矩陣M.
C.已知橢圓C的極坐標(biāo)方程為,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為(t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
D.已知x,y,z均為正數(shù).求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市閘北區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:填空題

設(shè)M(x,y,z)為空間直角坐標(biāo)系內(nèi)一點(diǎn),點(diǎn)M在xOy平面上的射影P的極坐標(biāo)為(ρ,θ)(極坐標(biāo)系以O(shè)為極點(diǎn),以x軸為極軸),則我們稱三元數(shù)組(ρ,θ,z)為點(diǎn)M的柱面坐標(biāo).已知M點(diǎn)的柱面坐標(biāo)為,則直線OM與xOz平面所成的角為   

查看答案和解析>>

同步練習(xí)冊答案