根據(jù)下面一組等式:
S1=1
S2=2+3=5
S3=4+5+6=15
S4=7+8+9+10=34
S5=11+12+13+14+15=65
S6=16+17+18+19+20+21=111
可得S1+S3+S5+…+S2n-1=   
【答案】分析:利用等差數(shù)列的通項公式與求和公式,可得Sn=(n3+n),再以2n-1代替n,得S2n-1=4n3-6n2+4n-1,結(jié)合和的特點可以求解.
解答:解:由題中數(shù)陣的排列特征,設(shè)第i行的第1個數(shù)記為ai(i=1,2,3…n)
則a2-a1=1
a3-a2=2
a4-a3=3

an-an-1=n-1
以上n-1個式子相加可得,an-a1=1+2+…+(n-1)=×(n-1)=
∴an=+1
Sn共有n連續(xù)正整數(shù)相加,并且最小加數(shù)為 +1,最大加數(shù)
∴Sn=n•×+×(-1)=(n3+n)
∴S2n-1=[(2n-1)3+(2n-1)]=4n3-6n2+4n-1
∴S1=1
S1+S3=16=24
S1+S3+S5=81=34
∴S1+S3+…+S2n-1=1+15+65+…+4n3-6n2+4n-1
=n4
故答案:n4
點評:本題以一個三角形數(shù)陣為載體,考查了等差數(shù)列的通項與求和公式、簡單的合情推理等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下面一組等式:
S1=1
S2=2+3=5
S3=4+5+6=15
S4=7+8+9+10=34
S5=11+12+13+14+15=65
S6=16+17+18+19+20+21=111
S7=22+23+24+25+26+27+28=175

可得S1+S3+S5+…+S2n-1=
n4
n4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下面一組等式:可得s1+s3+…+s2n-1
n4
n4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012江蘇高考數(shù)學(xué)填空題提升練習(xí)(5) 題型:022

根據(jù)下面一組等式:

可得s1+s3+s5+…+a2n-1=_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧省莊河六高高一第二學(xué)期第一次月考數(shù)學(xué)試題(理 題型:選擇題

根據(jù)下面一組等式:

…………

可得                       

 

查看答案和解析>>

同步練習(xí)冊答案