(2013•韶關(guān)一模)設(shè)等差數(shù)列{an}的公差d≠0,數(shù)列{bn}為等比數(shù)列,若a1=b1=a,a3=b3,a7=b5
(1)求數(shù)列{bn}的公比q;
(2)將數(shù)列{an},{bn}中的公共項(xiàng)按由小到大的順序排列組成一個(gè)新的數(shù)列{cn},是否存在正整數(shù)λ,μ,ω(其中λ<μ<ω)使得λ,μ,ω和cλ+λ,cμ+μ,cω+ω均成等差數(shù)列?若存在,求出λ,μ,ω的值,若不存在,請(qǐng)說明理由.
分析:(1)設(shè){bn}的公比為q,依題意,由
aq2=a+2d
aq4=a+6d
可求得q=±
2

(2)若{an}與{bn}有公共項(xiàng),不妨設(shè)an=bm,由于m為奇數(shù),且n=2
m+1
2
-1
,令m=2k-1(k∈N*),可求得bm=a•2k-1,于是有cn=2n-1a,假設(shè)存在正整數(shù)λ,μ,ω(其中λ<μ<ω)滿足題意,設(shè)p=λ,q=μ,r=ω則
2q=p+r
2(a•2q-1+q)=(a•2p-1+p)+(a•2r-1+r)
,利用基本不等式可求得q>
p+r
2
,與題設(shè)q=
p+r
2
矛盾,從而可得結(jié)論.
解答:解:(1)設(shè){bn}的公比為q,由題意
aq2=a+2d
aq4=a+6d
,即
aq2-a=2d
aq4-a=6d
---------------------------------------------(2分)
q=1不合題意,故
q2-1
q4-1
=
1
3
,解得q2=2,
∴q=±
2
----------------(4分)
(2)若{an}與{bn}有公共項(xiàng),不妨設(shè)an=bm,
由(2)知:m為奇數(shù),且n=2
m+1
2
-1
,
令m=2k-1(k∈N*),則bm=a•(
2
)
2k-1-1
=a•2k-1
∴cn=2n-1a---------------------------------------------------------------(12分)
若存在正整數(shù)λ,μ,ω(其中λ<μ<ω)滿足題意,
設(shè)p=λ,q=μ,r=ω則
2q=p+r
2(a•2q-1+q)=(a•2p-1+p)+(a•2r-1+r)

∴2q=2p-1+2r-1,又2p-1+2r-1≥2
2p+r-2
=2
p+r
2
(當(dāng)且僅當(dāng)p=r時(shí)取“=”)
又p≠r,
∴又2p-1+2r-12
p+r
2
----------------------(14分)
又y=2x在R上增,
∴q>
p+r
2
.與題設(shè)q=
p+r
2
矛盾,
∴不存在λ,μ,ω滿足題意.------------------------------------------(16分)
點(diǎn)評(píng):本題考查等差數(shù)列與等比數(shù)列的綜合,考查方程思想與運(yùn)算求解的能力和推理論證的能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)一模)在實(shí)驗(yàn)員進(jìn)行一項(xiàng)實(shí)驗(yàn)中,先后要實(shí)施5個(gè)程序,其中程度A只能出現(xiàn)在第一步或最后一步,程序C或D實(shí)施時(shí)必須相鄰,請(qǐng)問實(shí)驗(yàn)順序的編排方法共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)一模)如圖,三棱錐P-ABC中,PB⊥底面ABC于B,∠BCA=90°,PB=CA=2,點(diǎn)E是PC的中點(diǎn).
(1)求證:側(cè)面PAC⊥平面PBC;
(2)若異面直線AE與PB所成的角為θ,且tanθ=
3
2
2
,求二面角C-AB-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)一模)如果集合A={x|x2+ax+1=0}中只有一個(gè)元素,則a的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)一模)(幾何證明選講選做題)
在直角坐標(biāo)系xoy中,圓C1的參數(shù)方程為
x=cosα
y=1+sinα
(α為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸)中,圓C2的極坐標(biāo)方程為ρ=4sinθ,則C1與C2的位置關(guān)系是
內(nèi)切
內(nèi)切
(在“相交,相離,內(nèi)切,外切,內(nèi)含”中選擇一個(gè)你認(rèn)為正確的填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)一模)某校為了解高二學(xué)生A,B兩個(gè)學(xué)科學(xué)習(xí)成績的合格情況是否有關(guān),隨機(jī)抽取了該年級(jí)一次期末考試A,B兩個(gè)學(xué)科的合格人數(shù)與不合格人數(shù),得到以下2X2列聯(lián)表:
A學(xué)科合格人數(shù) A學(xué)科不合格人數(shù) 合計(jì)
B學(xué)科合格人數(shù) 40 20 60
B學(xué)科不合格人數(shù) 20 30 50
合計(jì) 60 50 110
(1)據(jù)此表格資料,你認(rèn)為有多大把握認(rèn)為“A學(xué)科合格”與“B學(xué)科合格”有關(guān);
(2)從“A學(xué)科合格”的學(xué)生中任意抽取2人,記被抽取的2名學(xué)生中“B學(xué)科合格”的人數(shù)為X,求X的數(shù)學(xué)期望.
附公式與表:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005
K 2.072 2.706 3.841 5.024 6.635 7.879

查看答案和解析>>

同步練習(xí)冊(cè)答案